1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-06 16:01:41 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
This commit is contained in:
2024-11-07 00:20:26 +08:00
parent 921e076c8e
commit 721407d9be
129 changed files with 31458 additions and 16612 deletions

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,71 @@
{
"data": {
"question": {
"questionId": "3650",
"questionFrontendId": "3328",
"categoryTitle": "Database",
"boundTopicId": 2958682,
"title": "Find Cities in Each State II",
"titleSlug": "find-cities-in-each-state-ii",
"content": null,
"translatedTitle": "查找每个州的城市 II",
"translatedContent": null,
"isPaidOnly": true,
"difficulty": "Medium",
"likes": 0,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": null,
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": "数据库",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": null,
"stats": "{\"totalAccepted\": \"58\", \"totalSubmission\": \"81\", \"totalAcceptedRaw\": 58, \"totalSubmissionRaw\": 81, \"acRate\": \"71.6%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"cities\":[\"state\",\"city\"]},\"rows\":{\"cities\":[[\"New York\",\"New York City\"],[\"New York\",\"Newark\"],[\"New York\",\"Buffalo\"],[\"New York\",\"Rochester\"],[\"California\",\"San Francisco\"],[\"California\",\"Sacramento\"],[\"California\",\"San Diego\"],[\"California\",\"Los Angeles\"],[\"Texas\",\"Tyler\"],[\"Texas\",\"Temple\"],[\"Texas\",\"Taylor\"],[\"Texas\",\"Dallas\"],[\"Pennsylvania\",\"Philadelphia\"],[\"Pennsylvania\",\"Pittsburgh\"],[\"Pennsylvania\",\"Pottstown\"]]}}",
"metaData": "{\"mysql\":[\"Create table if not exists cities( state varchar(100),city varchar(100))\"],\"mssql\":[\"Create table cities( state varchar(100),city varchar(100))\"],\"oraclesql\":[\"Create table cities( state varchar2(100),city varchar2(100))\"],\"database\":true,\"name\":\"state_city_analysis\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS cities (\\n state VARCHAR(100),\\n city VARCHAR(100)\\n);\\n\"],\"pythondata\":[\"cities = pd.DataFrame({\\n 'state': pd.Series(dtype='str'),\\n 'city': pd.Series(dtype='str')\\n})\"],\"database_schema\":{\"cities\":{\"state\":\"VARCHAR(100)\",\"city\":\"VARCHAR(100)\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table if not exists cities( state varchar(100),city varchar(100))",
"Truncate table cities",
"insert into cities (state, city) values ('New York', 'New York City')",
"insert into cities (state, city) values ('New York', 'Newark')",
"insert into cities (state, city) values ('New York', 'Buffalo')",
"insert into cities (state, city) values ('New York', 'Rochester')",
"insert into cities (state, city) values ('California', 'San Francisco')",
"insert into cities (state, city) values ('California', 'Sacramento')",
"insert into cities (state, city) values ('California', 'San Diego')",
"insert into cities (state, city) values ('California', 'Los Angeles')",
"insert into cities (state, city) values ('Texas', 'Tyler')",
"insert into cities (state, city) values ('Texas', 'Temple')",
"insert into cities (state, city) values ('Texas', 'Taylor')",
"insert into cities (state, city) values ('Texas', 'Dallas')",
"insert into cities (state, city) values ('Pennsylvania', 'Philadelphia')",
"insert into cities (state, city) values ('Pennsylvania', 'Pittsburgh')",
"insert into cities (state, city) values ('Pennsylvania', 'Pottstown')"
],
"enableRunCode": true,
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"cities\":[\"state\",\"city\"]},\"rows\":{\"cities\":[[\"New York\",\"New York City\"],[\"New York\",\"Newark\"],[\"New York\",\"Buffalo\"],[\"New York\",\"Rochester\"],[\"California\",\"San Francisco\"],[\"California\",\"Sacramento\"],[\"California\",\"San Diego\"],[\"California\",\"Los Angeles\"],[\"Texas\",\"Tyler\"],[\"Texas\",\"Temple\"],[\"Texas\",\"Taylor\"],[\"Texas\",\"Dallas\"],[\"Pennsylvania\",\"Philadelphia\"],[\"Pennsylvania\",\"Pittsburgh\"],[\"Pennsylvania\",\"Pottstown\"]]}}",
"__typename": "QuestionNode"
}
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,66 @@
{
"data": {
"question": {
"questionId": "3642",
"questionFrontendId": "3322",
"categoryTitle": "Database",
"boundTopicId": 2949746,
"title": "Premier League Table Ranking III",
"titleSlug": "premier-league-table-ranking-iii",
"content": null,
"translatedTitle": "英超积分榜排名 III",
"translatedContent": null,
"isPaidOnly": true,
"difficulty": "Medium",
"likes": 0,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": null,
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": "数据库",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": null,
"stats": "{\"totalAccepted\": \"84\", \"totalSubmission\": \"104\", \"totalAcceptedRaw\": 84, \"totalSubmissionRaw\": 104, \"acRate\": \"80.8%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"SeasonStats\":[\"season_id\",\"team_id\",\"team_name\",\"matches_played\",\"wins\",\"draws\",\"losses\",\"goals_for\",\"goals_against\"]},\"rows\":{\"SeasonStats\":[[2021,1,\"Manchester City\",38,29,6,3,99,26],[2021,2,\"Liverpool\",38,28,8,2,94,26],[2021,3,\"Chelsea\",38,21,11,6,76,33],[2021,4,\"Tottenham\",38,22,5,11,69,40],[2021,5,\"Arsenal\",38,22,3,13,61,48],[2022,1,\"Manchester City\",38,28,5,5,94,33],[2022,2,\"Arsenal\",38,26,6,6,88,43],[2022,3,\"Manchester United\",38,23,6,9,58,43],[2022,4,\"Newcastle\",38,19,14,5,68,33],[2022,5,\"Liverpool\",38,19,10,9,75,47]]}}",
"metaData": "{\"mysql\":[\"CREATE TABLE SeasonStats (\\n season_id INT,\\n team_id INT,\\n team_name VARCHAR(255),\\n matches_played INT,\\n wins INT,\\n draws INT,\\n losses INT,\\n goals_for INT,\\n goals_against INT\\n)\"],\"mssql\":[\"CREATE TABLE SeasonStats (\\n season_id INT,\\n team_id INT,\\n team_name NVARCHAR(255),\\n matches_played INT,\\n wins INT,\\n draws INT,\\n losses INT,\\n goals_for INT,\\n goals_against INT\\n)\"],\"oraclesql\":[\"CREATE TABLE SeasonStats (\\n season_id NUMBER,\\n team_id NUMBER,\\n team_name VARCHAR2(255),\\n matches_played NUMBER,\\n wins NUMBER,\\n draws NUMBER,\\n losses NUMBER,\\n goals_for NUMBER,\\n goals_against NUMBER\\n)\"],\"database\":true,\"name\":\"process_team_standings\",\"postgresql\":[\"CREATE TABLE SeasonStats (\\n season_id INTEGER,\\n team_id INTEGER,\\n team_name VARCHAR(255),\\n matches_played INTEGER,\\n wins INTEGER,\\n draws INTEGER,\\n losses INTEGER,\\n goals_for INTEGER,\\n goals_against INTEGER\\n);\\n\"],\"pythondata\":[\"SeasonStats = pd.DataFrame(columns=['season_id', 'team_id', 'team_name', 'matches_played', 'wins', 'draws', 'losses', 'goals_for', 'goals_against'], dtype='int')\\n\"],\"database_schema\":{\"SeasonStats\":{\"season_id\":\"INT\",\"team_id\":\"INT\",\"team_name\":\"VARCHAR(255)\",\"matches_played\":\"INT\",\"wins\":\"INT\",\"draws\":\"INT\",\"losses\":\"INT\",\"goals_for\":\"INT\",\"goals_against\":\"INT\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"CREATE TABLE SeasonStats (\n season_id INT,\n team_id INT,\n team_name VARCHAR(255),\n matches_played INT,\n wins INT,\n draws INT,\n losses INT,\n goals_for INT,\n goals_against INT\n)",
"Truncate table SeasonStats",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '1', 'Manchester City', '38', '29', '6', '3', '99', '26')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '2', 'Liverpool', '38', '28', '8', '2', '94', '26')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '3', 'Chelsea', '38', '21', '11', '6', '76', '33')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '4', 'Tottenham', '38', '22', '5', '11', '69', '40')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '5', 'Arsenal', '38', '22', '3', '13', '61', '48')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '1', 'Manchester City', '38', '28', '5', '5', '94', '33')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '2', 'Arsenal', '38', '26', '6', '6', '88', '43')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '3', 'Manchester United', '38', '23', '6', '9', '58', '43')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '4', 'Newcastle', '38', '19', '14', '5', '68', '33')",
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '5', 'Liverpool', '38', '19', '10', '9', '75', '47')"
],
"enableRunCode": true,
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"SeasonStats\":[\"season_id\",\"team_id\",\"team_name\",\"matches_played\",\"wins\",\"draws\",\"losses\",\"goals_for\",\"goals_against\"]},\"rows\":{\"SeasonStats\":[[2021,1,\"Manchester City\",38,29,6,3,99,26],[2021,2,\"Liverpool\",38,28,8,2,94,26],[2021,3,\"Chelsea\",38,21,11,6,76,33],[2021,4,\"Tottenham\",38,22,5,11,69,40],[2021,5,\"Arsenal\",38,22,3,13,61,48],[2022,1,\"Manchester City\",38,28,5,5,94,33],[2022,2,\"Arsenal\",38,26,6,6,88,43],[2022,3,\"Manchester United\",38,23,6,9,58,43],[2022,4,\"Newcastle\",38,19,14,5,68,33],[2022,5,\"Liverpool\",38,19,10,9,75,47]]}}",
"__typename": "QuestionNode"
}
}
}

View File

@@ -0,0 +1,66 @@
{
"data": {
"question": {
"questionId": "3660",
"questionFrontendId": "3338",
"categoryTitle": "Database",
"boundTopicId": 2968919,
"title": "Second Highest Salary II",
"titleSlug": "second-highest-salary-ii",
"content": null,
"translatedTitle": "第二高的薪水 II",
"translatedContent": null,
"isPaidOnly": true,
"difficulty": "Medium",
"likes": 0,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": null,
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": "数据库",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": null,
"stats": "{\"totalAccepted\": \"60\", \"totalSubmission\": \"65\", \"totalAcceptedRaw\": 60, \"totalSubmissionRaw\": 65, \"acRate\": \"92.3%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"employees\":[\"emp_id\",\"salary\",\"dept\"]},\"rows\":{\"employees\":[[1,70000,\"Sales\"],[2,80000,\"Sales\"],[3,80000,\"Sales\"],[4,90000,\"Sales\"],[5,55000,\"IT\"],[6,65000,\"IT\"],[7,65000,\"IT\"],[8,50000,\"Marketing\"],[9,55000,\"Marketing\"],[10,55000,\"HR\"]]}}",
"metaData": "{\"mysql\":[\"Create table if not exists Employees (\\n emp_id int,\\n salary int,\\n dept varchar(50)\\n)\"],\"mssql\":[\"Create table Employees (\\n emp_id int,\\n salary int,\\n dept varchar(50)\\n)\"],\"oraclesql\":[\"Create table Employees (\\n emp_id number,\\n salary number,\\n dept varchar2(50)\\n)\"],\"database\":true,\"name\":\"find_second_highest_salary\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Employees (\\n emp_id INT,\\n salary INT,\\n dept VARCHAR(50)\\n);\\n\"],\"pythondata\":[\"employees = pd.DataFrame({\\n 'emp_id': pd.Series(dtype='int'),\\n 'salary': pd.Series(dtype='int'),\\n 'dept': pd.Series(dtype='string')\\n})\"],\"database_schema\":{\"Employees\":{\"emp_id\":\"INT\",\"salary\":\"INT\",\"dept\":\"VARCHAR(50)\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table if not exists Employees (\n emp_id int,\n salary int,\n dept varchar(50)\n)",
"Truncate table employees",
"insert into employees (emp_id, salary, dept) values ('1', '70000', 'Sales')",
"insert into employees (emp_id, salary, dept) values ('2', '80000', 'Sales')",
"insert into employees (emp_id, salary, dept) values ('3', '80000', 'Sales')",
"insert into employees (emp_id, salary, dept) values ('4', '90000', 'Sales')",
"insert into employees (emp_id, salary, dept) values ('5', '55000', 'IT')",
"insert into employees (emp_id, salary, dept) values ('6', '65000', 'IT')",
"insert into employees (emp_id, salary, dept) values ('7', '65000', 'IT')",
"insert into employees (emp_id, salary, dept) values ('8', '50000', 'Marketing')",
"insert into employees (emp_id, salary, dept) values ('9', '55000', 'Marketing')",
"insert into employees (emp_id, salary, dept) values ('10', '55000', 'HR')"
],
"enableRunCode": true,
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"employees\":[\"emp_id\",\"salary\",\"dept\"]},\"rows\":{\"employees\":[[1,70000,\"Sales\"],[2,80000,\"Sales\"],[3,80000,\"Sales\"],[4,90000,\"Sales\"],[5,55000,\"IT\"],[6,65000,\"IT\"],[7,65000,\"IT\"],[8,50000,\"Marketing\"],[9,55000,\"Marketing\"],[10,55000,\"HR\"]]}}",
"__typename": "QuestionNode"
}
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long