1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/originData/sales-analysis-iii.json
2023-12-09 19:57:46 +08:00

96 lines
13 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"data": {
"question": {
"questionId": "1174",
"questionFrontendId": "1084",
"categoryTitle": "Database",
"boundTopicId": 11003,
"title": "Sales Analysis III",
"titleSlug": "sales-analysis-iii",
"content": "<p>Table: <code>Product</code></p>\n\n<pre>\n+--------------+---------+\n| Column Name | Type |\n+--------------+---------+\n| product_id | int |\n| product_name | varchar |\n| unit_price | int |\n+--------------+---------+\nproduct_id is the primary key (column with unique values) of this table.\nEach row of this table indicates the name and the price of each product.\n</pre>\n\n<p>Table: <code>Sales</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| seller_id | int |\n| product_id | int |\n| buyer_id | int |\n| sale_date | date |\n| quantity | int |\n| price | int |\n+-------------+---------+\nThis table can have duplicate rows.\nproduct_id is a foreign key (reference column) to the Product table.\nEach row of this table contains some information about one sale.\n</pre>\n\n<p>&nbsp;</p>\n\n<p>Write a solution to&nbsp;report&nbsp;the <strong>products</strong> that were <strong>only</strong> sold in the first quarter of <code>2019</code>. That is, between <code>2019-01-01</code> and <code>2019-03-31</code> inclusive.</p>\n\n<p>Return the result table in <strong>any order</strong>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nProduct table:\n+------------+--------------+------------+\n| product_id | product_name | unit_price |\n+------------+--------------+------------+\n| 1 | S8 | 1000 |\n| 2 | G4 | 800 |\n| 3 | iPhone | 1400 |\n+------------+--------------+------------+\nSales table:\n+-----------+------------+----------+------------+----------+-------+\n| seller_id | product_id | buyer_id | sale_date | quantity | price |\n+-----------+------------+----------+------------+----------+-------+\n| 1 | 1 | 1 | 2019-01-21 | 2 | 2000 |\n| 1 | 2 | 2 | 2019-02-17 | 1 | 800 |\n| 2 | 2 | 3 | 2019-06-02 | 1 | 800 |\n| 3 | 3 | 4 | 2019-05-13 | 2 | 2800 |\n+-----------+------------+----------+------------+----------+-------+\n<strong>Output:</strong> \n+-------------+--------------+\n| product_id | product_name |\n+-------------+--------------+\n| 1 | S8 |\n+-------------+--------------+\n<strong>Explanation:</strong> \nThe product with id 1 was only sold in the spring of 2019.\nThe product with id 2 was sold in the spring of 2019 but was also sold after the spring of 2019.\nThe product with id 3 was sold after spring 2019.\nWe return only product 1 as it is the product that was only sold in the spring of 2019.\n</pre>\n",
"translatedTitle": "销售分析III",
"translatedContent": "<p>表:&nbsp;<code>Product</code></p>\n\n<pre>\n+--------------+---------+\n| Column Name | Type |\n+--------------+---------+\n| product_id | int |\n| product_name | varchar |\n| unit_price | int |\n+--------------+---------+\nproduct_id 是该表的主键(具有唯一值的列)。\n该表的每一行显示每个产品的名称和价格。\n</pre>\n\n<p>表:<code>Sales</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| seller_id | int |\n| product_id | int |\n| buyer_id | int |\n| sale_date | date |\n| quantity | int |\n| price | int |\n+------ ------+---------+\n这个表可能有重复的行。\nproduct_id 是 Product 表的外键reference 列)。\n该表的每一行包含关于一个销售的一些信息。\n</pre>\n\n<p>&nbsp;</p>\n\n<p>编写解决方案,报告<code>2019年春季</code>才售出的产品。即<strong>仅</strong>在<code><strong>2019-01-01</strong></code>至<code><strong>2019-03-31</strong></code>(含)之间出售的商品。</p>\n\n<p>以 <strong>任意顺序</strong> 返回结果表。</p>\n\n<p>结果格式如下所示。</p>\n\n<p>&nbsp;</p>\n\n<p><strong>示例 1:</strong></p>\n\n<pre>\n<strong>输入:</strong>\nProduct table:\n+------------+--------------+------------+\n| product_id | product_name | unit_price |\n+------------+--------------+------------+\n| 1 | S8 | 1000 |\n| 2 | G4 | 800 |\n| 3 | iPhone | 1400 |\n+------------+--------------+------------+\n<code>Sales </code>table:\n+-----------+------------+----------+------------+----------+-------+\n| seller_id | product_id | buyer_id | sale_date | quantity | price |\n+-----------+------------+----------+------------+----------+-------+\n| 1 | 1 | 1 | 2019-01-21 | 2 | 2000 |\n| 1 | 2 | 2 | 2019-02-17 | 1 | 800 |\n| 2 | 2 | 3 | 2019-06-02 | 1 | 800 |\n| 3 | 3 | 4 | 2019-05-13 | 2 | 2800 |\n+-----------+------------+----------+------------+----------+-------+\n<strong>输出:</strong>\n+-------------+--------------+\n| product_id | product_name |\n+-------------+--------------+\n| 1 | S8 |\n+-------------+--------------+\n<strong>解释:</strong>\nid 为 1 的产品仅在 2019 年春季销售。\nid 为 2 的产品在 2019 年春季销售,但也在 2019 年春季之后销售。\nid 为 3 的产品在 2019 年春季之后销售。\n我们只返回 id 为 1 的产品,因为它是 2019 年春季才销售的产品。</pre>\n",
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 168,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": "数据库",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "MySQL",
"langSlug": "mysql",
"code": "# Write your MySQL query statement below",
"__typename": "CodeSnippetNode"
},
{
"lang": "MS SQL Server",
"langSlug": "mssql",
"code": "/* Write your T-SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Oracle",
"langSlug": "oraclesql",
"code": "/* Write your PL/SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef sales_analysis(product: pd.DataFrame, sales: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "PostgreSQL",
"langSlug": "postgresql",
"code": "-- Write your PostgreSQL query statement below",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"63.1K\", \"totalSubmission\": \"122.4K\", \"totalAcceptedRaw\": 63108, \"totalSubmissionRaw\": 122386, \"acRate\": \"51.6%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"Product\":[\"product_id\",\"product_name\",\"unit_price\"],\"Sales\":[\"seller_id\",\"product_id\",\"buyer_id\",\"sale_date\",\"quantity\",\"price\"]},\"rows\":{\"Product\":[[1,\"S8\",1000],[2,\"G4\",800],[3,\"iPhone\",1400]],\"Sales\":[[1,1,1,\"2019-01-21\",2,2000],[1,2,2,\"2019-02-17\",1,800],[2,2,3,\"2019-06-02\",1,800],[3,3,4,\"2019-05-13\",2,2800]]}}",
"metaData": "{\"mysql\":[\"Create table If Not Exists Product (product_id int, product_name varchar(10), unit_price int)\",\"Create table If Not Exists Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)\"],\"mssql\":[\"Create table Product (product_id int, product_name varchar(10), unit_price int)\",\"Create table Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)\"],\"oraclesql\":[\"Create table Product (product_id int, product_name varchar(10), unit_price int)\",\"Create table Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"sales_analysis\",\"pythondata\":[\"Product = pd.DataFrame([], columns=['product_id', 'product_name', 'unit_price']).astype({'product_id':'Int64', 'product_name':'object', 'unit_price':'Int64'})\",\"Sales = pd.DataFrame([], columns=['seller_id', 'product_id', 'buyer_id', 'sale_date', 'quantity', 'price']).astype({'seller_id':'Int64', 'product_id':'Int64', 'buyer_id':'Int64', 'sale_date':'datetime64[ns]', 'quantity':'Int64', 'price':'Int64'})\"],\"postgresql\":[\"Create table If Not Exists Product (product_id int, product_name varchar(10), unit_price int)\\n\",\"Create table If Not Exists Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)\"],\"database_schema\":{\"Product\":{\"product_id\":\"INT\",\"product_name\":\"VARCHAR(10)\",\"unit_price\":\"INT\"},\"Sales\":{\"seller_id\":\"INT\",\"product_id\":\"INT\",\"buyer_id\":\"INT\",\"sale_date\":\"DATE\",\"quantity\":\"INT\",\"price\":\"INT\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table If Not Exists Product (product_id int, product_name varchar(10), unit_price int)",
"Create table If Not Exists Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)",
"Truncate table Product",
"insert into Product (product_id, product_name, unit_price) values ('1', 'S8', '1000')",
"insert into Product (product_id, product_name, unit_price) values ('2', 'G4', '800')",
"insert into Product (product_id, product_name, unit_price) values ('3', 'iPhone', '1400')",
"Truncate table Sales",
"insert into Sales (seller_id, product_id, buyer_id, sale_date, quantity, price) values ('1', '1', '1', '2019-01-21', '2', '2000')",
"insert into Sales (seller_id, product_id, buyer_id, sale_date, quantity, price) values ('1', '2', '2', '2019-02-17', '1', '800')",
"insert into Sales (seller_id, product_id, buyer_id, sale_date, quantity, price) values ('2', '2', '3', '2019-06-02', '1', '800')",
"insert into Sales (seller_id, product_id, buyer_id, sale_date, quantity, price) values ('3', '3', '4', '2019-05-13', '2', '2800')"
],
"enableRunCode": true,
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"Product\":[\"product_id\",\"product_name\",\"unit_price\"],\"Sales\":[\"seller_id\",\"product_id\",\"buyer_id\",\"sale_date\",\"quantity\",\"price\"]},\"rows\":{\"Product\":[[1,\"S8\",1000],[2,\"G4\",800],[3,\"iPhone\",1400]],\"Sales\":[[1,1,1,\"2019-01-21\",2,2000],[1,2,2,\"2019-02-17\",1,800],[2,2,3,\"2019-06-02\",1,800],[3,3,4,\"2019-05-13\",2,2800]]}}",
"__typename": "QuestionNode"
}
}
}