{ "data": { "question": { "questionId": "1174", "questionFrontendId": "1084", "categoryTitle": "Database", "boundTopicId": 11003, "title": "Sales Analysis III", "titleSlug": "sales-analysis-iii", "content": "
Table: Product
\n+--------------+---------+\n| Column Name | Type |\n+--------------+---------+\n| product_id | int |\n| product_name | varchar |\n| unit_price | int |\n+--------------+---------+\nproduct_id is the primary key (column with unique values) of this table.\nEach row of this table indicates the name and the price of each product.\n\n\n
Table: Sales
\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| seller_id | int |\n| product_id | int |\n| buyer_id | int |\n| sale_date | date |\n| quantity | int |\n| price | int |\n+-------------+---------+\nThis table can have duplicate rows.\nproduct_id is a foreign key (reference column) to the Product table.\nEach row of this table contains some information about one sale.\n\n\n
\n\n
Write a solution to report the products that were only sold in the first quarter of 2019
. That is, between 2019-01-01
and 2019-03-31
inclusive.
Return the result table in any order.
\n\nThe result format is in the following example.
\n\n\n
Example 1:
\n\n\nInput: \nProduct table:\n+------------+--------------+------------+\n| product_id | product_name | unit_price |\n+------------+--------------+------------+\n| 1 | S8 | 1000 |\n| 2 | G4 | 800 |\n| 3 | iPhone | 1400 |\n+------------+--------------+------------+\nSales table:\n+-----------+------------+----------+------------+----------+-------+\n| seller_id | product_id | buyer_id | sale_date | quantity | price |\n+-----------+------------+----------+------------+----------+-------+\n| 1 | 1 | 1 | 2019-01-21 | 2 | 2000 |\n| 1 | 2 | 2 | 2019-02-17 | 1 | 800 |\n| 2 | 2 | 3 | 2019-06-02 | 1 | 800 |\n| 3 | 3 | 4 | 2019-05-13 | 2 | 2800 |\n+-----------+------------+----------+------------+----------+-------+\nOutput: \n+-------------+--------------+\n| product_id | product_name |\n+-------------+--------------+\n| 1 | S8 |\n+-------------+--------------+\nExplanation: \nThe product with id 1 was only sold in the spring of 2019.\nThe product with id 2 was sold in the spring of 2019 but was also sold after the spring of 2019.\nThe product with id 3 was sold after spring 2019.\nWe return only product 1 as it is the product that was only sold in the spring of 2019.\n\n", "translatedTitle": "销售分析III", "translatedContent": "
表: Product
\n+--------------+---------+\n| Column Name | Type |\n+--------------+---------+\n| product_id | int |\n| product_name | varchar |\n| unit_price | int |\n+--------------+---------+\nproduct_id 是该表的主键(具有唯一值的列)。\n该表的每一行显示每个产品的名称和价格。\n\n\n
表:Sales
\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| seller_id | int |\n| product_id | int |\n| buyer_id | int |\n| sale_date | date |\n| quantity | int |\n| price | int |\n+------ ------+---------+\n这个表可能有重复的行。\nproduct_id 是 Product 表的外键(reference 列)。\n该表的每一行包含关于一个销售的一些信息。\n\n\n
\n\n
编写解决方案,报告2019年春季
才售出的产品。即仅在2019-01-01
至2019-03-31
(含)之间出售的商品。
以 任意顺序 返回结果表。
\n\n结果格式如下所示。
\n\n\n\n
示例 1:
\n\n\n输入:\nProduct table:\n+------------+--------------+------------+\n| product_id | product_name | unit_price |\n+------------+--------------+------------+\n| 1 | S8 | 1000 |\n| 2 | G4 | 800 |\n| 3 | iPhone | 1400 |\n+------------+--------------+------------+\nSales
table:\n+-----------+------------+----------+------------+----------+-------+\n| seller_id | product_id | buyer_id | sale_date | quantity | price |\n+-----------+------------+----------+------------+----------+-------+\n| 1 | 1 | 1 | 2019-01-21 | 2 | 2000 |\n| 1 | 2 | 2 | 2019-02-17 | 1 | 800 |\n| 2 | 2 | 3 | 2019-06-02 | 1 | 800 |\n| 3 | 3 | 4 | 2019-05-13 | 2 | 2800 |\n+-----------+------------+----------+------------+----------+-------+\n输出:\n+-------------+--------------+\n| product_id | product_name |\n+-------------+--------------+\n| 1 | S8 |\n+-------------+--------------+\n解释:\nid 为 1 的产品仅在 2019 年春季销售。\nid 为 2 的产品在 2019 年春季销售,但也在 2019 年春季之后销售。\nid 为 3 的产品在 2019 年春季之后销售。\n我们只返回 id 为 1 的产品,因为它是 2019 年春季才销售的产品。
\n",
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 168,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": "数据库",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "MySQL",
"langSlug": "mysql",
"code": "# Write your MySQL query statement below",
"__typename": "CodeSnippetNode"
},
{
"lang": "MS SQL Server",
"langSlug": "mssql",
"code": "/* Write your T-SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Oracle",
"langSlug": "oraclesql",
"code": "/* Write your PL/SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef sales_analysis(product: pd.DataFrame, sales: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "PostgreSQL",
"langSlug": "postgresql",
"code": "-- Write your PostgreSQL query statement below",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"63.1K\", \"totalSubmission\": \"122.4K\", \"totalAcceptedRaw\": 63108, \"totalSubmissionRaw\": 122386, \"acRate\": \"51.6%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"Product\":[\"product_id\",\"product_name\",\"unit_price\"],\"Sales\":[\"seller_id\",\"product_id\",\"buyer_id\",\"sale_date\",\"quantity\",\"price\"]},\"rows\":{\"Product\":[[1,\"S8\",1000],[2,\"G4\",800],[3,\"iPhone\",1400]],\"Sales\":[[1,1,1,\"2019-01-21\",2,2000],[1,2,2,\"2019-02-17\",1,800],[2,2,3,\"2019-06-02\",1,800],[3,3,4,\"2019-05-13\",2,2800]]}}",
"metaData": "{\"mysql\":[\"Create table If Not Exists Product (product_id int, product_name varchar(10), unit_price int)\",\"Create table If Not Exists Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)\"],\"mssql\":[\"Create table Product (product_id int, product_name varchar(10), unit_price int)\",\"Create table Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)\"],\"oraclesql\":[\"Create table Product (product_id int, product_name varchar(10), unit_price int)\",\"Create table Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"sales_analysis\",\"pythondata\":[\"Product = pd.DataFrame([], columns=['product_id', 'product_name', 'unit_price']).astype({'product_id':'Int64', 'product_name':'object', 'unit_price':'Int64'})\",\"Sales = pd.DataFrame([], columns=['seller_id', 'product_id', 'buyer_id', 'sale_date', 'quantity', 'price']).astype({'seller_id':'Int64', 'product_id':'Int64', 'buyer_id':'Int64', 'sale_date':'datetime64[ns]', 'quantity':'Int64', 'price':'Int64'})\"],\"postgresql\":[\"Create table If Not Exists Product (product_id int, product_name varchar(10), unit_price int)\\n\",\"Create table If Not Exists Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)\"],\"database_schema\":{\"Product\":{\"product_id\":\"INT\",\"product_name\":\"VARCHAR(10)\",\"unit_price\":\"INT\"},\"Sales\":{\"seller_id\":\"INT\",\"product_id\":\"INT\",\"buyer_id\":\"INT\",\"sale_date\":\"DATE\",\"quantity\":\"INT\",\"price\":\"INT\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table If Not Exists Product (product_id int, product_name varchar(10), unit_price int)",
"Create table If Not Exists Sales (seller_id int, product_id int, buyer_id int, sale_date date, quantity int, price int)",
"Truncate table Product",
"insert into Product (product_id, product_name, unit_price) values ('1', 'S8', '1000')",
"insert into Product (product_id, product_name, unit_price) values ('2', 'G4', '800')",
"insert into Product (product_id, product_name, unit_price) values ('3', 'iPhone', '1400')",
"Truncate table Sales",
"insert into Sales (seller_id, product_id, buyer_id, sale_date, quantity, price) values ('1', '1', '1', '2019-01-21', '2', '2000')",
"insert into Sales (seller_id, product_id, buyer_id, sale_date, quantity, price) values ('1', '2', '2', '2019-02-17', '1', '800')",
"insert into Sales (seller_id, product_id, buyer_id, sale_date, quantity, price) values ('2', '2', '3', '2019-06-02', '1', '800')",
"insert into Sales (seller_id, product_id, buyer_id, sale_date, quantity, price) values ('3', '3', '4', '2019-05-13', '2', '2800')"
],
"enableRunCode": true,
"envInfo": "{\"mysql\":[\"MySQL\",\"\\u7248\\u672c\\uff1a mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\" Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\" Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\" PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"Product\":[\"product_id\",\"product_name\",\"unit_price\"],\"Sales\":[\"seller_id\",\"product_id\",\"buyer_id\",\"sale_date\",\"quantity\",\"price\"]},\"rows\":{\"Product\":[[1,\"S8\",1000],[2,\"G4\",800],[3,\"iPhone\",1400]],\"Sales\":[[1,1,1,\"2019-01-21\",2,2000],[1,2,2,\"2019-02-17\",1,800],[2,2,3,\"2019-06-02\",1,800],[3,3,4,\"2019-05-13\",2,2800]]}}",
"__typename": "QuestionNode"
}
}
}MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"