mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-09-07 08:21:41 +08:00
Compare commits
34 Commits
2023-12-09
...
2024-12-20
Author | SHA1 | Date | |
---|---|---|---|
2aacdf2f93 | |||
00a21292d6 | |||
988e8e3971 | |||
721407d9be | |||
921e076c8e | |||
![]() |
76e35939b6 | ||
![]() |
fc8e794743 | ||
1bb2fbd76e | |||
![]() |
91ca37c7ef | ||
![]() |
43a450d3d7 | ||
![]() |
847e599aec | ||
![]() |
b1fc2c627d | ||
b545ef1222 | |||
![]() |
f55b93a706 | ||
![]() |
4b8628b444 | ||
![]() |
a8fcd060a2 | ||
![]() |
59e97714b1 | ||
![]() |
45399227fb | ||
![]() |
7a26aa2bab | ||
![]() |
26ccf4c890 | ||
0bbe66ecc9 | |||
ed5c92e00e | |||
e31313baa5 | |||
5028bd771c | |||
6bfbd3556c | |||
a697596e35 | |||
![]() |
9e50b3cd07 | ||
![]() |
3a14465651 | ||
2817184d94 | |||
![]() |
cd5371cdc1 | ||
f05348ae2b | |||
f14c8312c2 | |||
a0a115e04c | |||
![]() |
359df08458 |
100
README.md
100
README.md
@@ -1,46 +1,54 @@
|
||||
# 力扣题库(完整版)
|
||||
|
||||
> 最后更新日期: **2023.12.09**
|
||||
>
|
||||
> 使用脚本前请务必仔细完整阅读本 `README.md` 文件
|
||||
|
||||
### 仓库介绍
|
||||
|
||||
使用 Python 脚本分批将力扣(`leetcode.com` 和 `leetcode-cn.com`)上面的题目保存下来,方便没有网的时候进行学习。(仅包含可以在网页上直接打开的公开题目,不包含 VIP 题目)
|
||||
|
||||
|
||||
|
||||
### 仓库目录结构
|
||||
|
||||
国外版力扣题库,在仓库 `leetcode/problem` 文件夹下;国内版力扣题库,在仓库 `leetcode-cn/problem (Chinese)` 和 `leetcode-cn/problem (English)` 文件夹下。(部分题目只有中文版,无对应英文版)。
|
||||
|
||||
|
||||
|
||||
### 特别注意!
|
||||
|
||||
#### 版权相关
|
||||
|
||||
**所有版权都为 LeetCode (及力扣中国) 官方所有,此处仅供学习使用,不要他用。也请大家不要滥用,不要侵犯力扣平台的合法权益。**
|
||||
|
||||
**感谢 LeetCode 平台为我们提供大量的算法题目进行练习与提升。如果大家经济条件允许,请大家多多支持力扣,例如冲冲会员等。**
|
||||
|
||||
力扣题库的权益归属力扣,使用力扣题库,需要遵循力扣使用条例,若您不同意此条例,请立即关闭当前网页,不要继续使用本题库。
|
||||
|
||||
力扣(LeetCode)• 使用条例: https://leetcode-cn.com/terms-c/
|
||||
|
||||
LeetCode Terms of Service: https://leetcode.com/terms/
|
||||
|
||||
|
||||
|
||||
#### 脚本原作者
|
||||
|
||||
Python脚本是在网上教程的基础上进行二改得到的,原版地址:https://blog.csdn.net/weixin_37267014/article/details/81429057
|
||||
|
||||
|
||||
|
||||
#### 其他
|
||||
|
||||
由于脚本运行时会向力扣网站发出大量请求,所以请大家不要随便尝试此脚本,以免影响力扣网站正常运行。
|
||||
|
||||
因为使用此脚本所造成的一系列问题,责任由您自己承担,作者不承担相应责任。
|
||||
|
||||
# 力扣题库(完整版)
|
||||
|
||||
> 最后更新日期: **2024.12.20**
|
||||
>
|
||||
> 使用脚本前请务必仔细完整阅读本 `README.md` 文件
|
||||
|
||||
### 仓库介绍
|
||||
|
||||
使用 Python 脚本分批将力扣(`leetcode.com` 和 `leetcode-cn.com`)上面的题目保存下来,方便没有网的时候进行学习。(仅包含可以在网页上直接打开的公开题目,不包含 VIP 题目)
|
||||
|
||||
|
||||
|
||||
### 仓库目录结构
|
||||
|
||||
国外版力扣题库,在仓库 `leetcode/problem` 文件夹下;国内版力扣题库,在仓库 `leetcode-cn/problem (Chinese)` 和 `leetcode-cn/problem (English)` 文件夹下。(部分题目只有中文版,无对应英文版)。
|
||||
|
||||
|
||||
|
||||
### 安装依赖
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
|
||||
|
||||
### 特别注意!
|
||||
|
||||
#### 版权相关
|
||||
|
||||
**所有版权都为 LeetCode (及力扣中国) 官方所有,此处仅供学习使用,不要他用。也请大家不要滥用,不要侵犯力扣平台的合法权益。**
|
||||
|
||||
**感谢 LeetCode 平台为我们提供大量的算法题目进行练习与提升。如果大家经济条件允许,请大家多多支持力扣,例如充充会员等。**
|
||||
|
||||
力扣题库的权益归属力扣,使用力扣题库,需要遵循力扣使用条例,若您不同意此条例,请立即关闭当前网页,不要继续使用本题库。
|
||||
|
||||
力扣(LeetCode)• 使用条例: https://leetcode-cn.com/terms-c/
|
||||
|
||||
LeetCode Terms of Service: https://leetcode.com/terms/
|
||||
|
||||
|
||||
|
||||
#### 脚本原作者
|
||||
|
||||
Python脚本是在网上教程的基础上进行二改得到的,原版地址:https://blog.csdn.net/weixin_37267014/article/details/81429057
|
||||
|
||||
|
||||
|
||||
#### 其他
|
||||
|
||||
由于脚本运行时会向力扣网站发出大量请求,所以请大家不要随便尝试此脚本,以免影响力扣网站正常运行。
|
||||
|
||||
因为使用此脚本所造成的一系列问题,责任由您自己承担,作者不承担相应责任。
|
||||
|
||||
|
@@ -8,9 +8,15 @@ import requests
|
||||
from requests.exceptions import RequestException
|
||||
from bs4 import BeautifulSoup
|
||||
|
||||
import urllib3
|
||||
urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning)
|
||||
|
||||
def get_proble_set(url):
|
||||
try:
|
||||
response = requests.get(url)
|
||||
# response = requests.get(url)
|
||||
response = requests.get(url, headers = {
|
||||
'User-Agent': "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/126.0.0.0 Safari/537.36"
|
||||
}, verify=False)
|
||||
if response.status_code == 200:
|
||||
return response.text
|
||||
return None
|
||||
@@ -34,9 +40,9 @@ def parse_proble_set(problemSet):
|
||||
continue
|
||||
|
||||
def construct_url(problemTitle):
|
||||
url = "https://leetcode.cn/problems/"+ problemTitle + "/"
|
||||
url = "https://leetcode.cn/problems/" + problemTitle + "/"
|
||||
# print(url)
|
||||
get_proble_content(url,problemTitle)
|
||||
get_proble_content(url, problemTitle)
|
||||
|
||||
def save_problem(title,content, editorType = ""):
|
||||
#content = bytes(content,encoding = 'utf8')
|
||||
@@ -118,7 +124,11 @@ def saveJSON(data, filename):
|
||||
|
||||
def main():
|
||||
url = "https://leetcode.cn/api/problems/all/"
|
||||
html = json.loads(get_proble_set(url))
|
||||
jsonContent = get_proble_set(url)
|
||||
if jsonContent == None:
|
||||
print('列表请求失败!')
|
||||
return
|
||||
html = json.loads(jsonContent)
|
||||
saveJSON(html, "origin-data.json")
|
||||
|
||||
# html = json.load(open("origin-data.json", 'r', encoding='utf-8'))
|
||||
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
56
leetcode-cn/originData/[no content]binary-tree-nodes.json
Normal file
56
leetcode-cn/originData/[no content]binary-tree-nodes.json
Normal file
@@ -0,0 +1,56 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3259",
|
||||
"questionFrontendId": "100177",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653971,
|
||||
"title": "Binary Tree Nodes",
|
||||
"titleSlug": "binary-tree-nodes",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"23\", \"totalSubmission\": \"30\", \"totalAcceptedRaw\": 23, \"totalSubmissionRaw\": 30, \"acRate\": \"76.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Tree\":[\"N\",\"P\"]},\"rows\":{\"Tree\":[[1,2],[3,2],[6,8],[9,8],[2,5],[8,5],[5,null]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Tree (N int,P int)\"],\"mssql\":[\"Create table Tree (N int,P int)\"],\"oraclesql\":[\"Create table Tree (N int,P int)\"],\"database\":true,\"name\":\"binary_tree_nodes\",\"pythondata\":[\"Tree = pd.DataFrame([], columns=['N', 'P']).astype({'N':'Int64', 'P':'Int64'})\"],\"postgresql\":[\"Create table If Not Exists Tree (N int,P int)\\n\"],\"database_schema\":{\"Tree\":{\"N\":\"INT\",\"P\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Tree (N int,P int)",
|
||||
"Truncate table Tree",
|
||||
"insert into Tree (N, P) values ('1', '2')",
|
||||
"insert into Tree (N, P) values ('3', '2')",
|
||||
"insert into Tree (N, P) values ('6', '8')",
|
||||
"insert into Tree (N, P) values ('9', '8')",
|
||||
"insert into Tree (N, P) values ('2', '5')",
|
||||
"insert into Tree (N, P) values ('8', '5')",
|
||||
"insert into Tree (N, P) values ('5', 'None')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Tree\":[\"N\",\"P\"]},\"rows\":{\"Tree\":[[1,2],[3,2],[6,8],[9,8],[2,5],[8,5],[5,null]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
@@ -0,0 +1,60 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3512",
|
||||
"questionFrontendId": "3204",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2827445,
|
||||
"title": "Bitwise User Permissions Analysis",
|
||||
"titleSlug": "bitwise-user-permissions-analysis",
|
||||
"content": null,
|
||||
"translatedTitle": "按位用户权限分析",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"63\", \"totalSubmission\": \"66\", \"totalAcceptedRaw\": 63, \"totalSubmissionRaw\": 66, \"acRate\": \"95.5%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"user_permissions\":[\"user_id\",\"permissions\"]},\"rows\":{\"user_permissions\":[[1,5],[2,12],[3,7],[4,3]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists user_permissions(user_id int, permissions int)\"],\"mssql\":[\"Create table user_permissions(user_id int, permissions int)\"],\"oraclesql\":[\"Create table user_permissions(user_id NUMBER, permissions NUMBER)\"],\"database\":true,\"name\":\"analyze_permissions\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS user_permissions (\\n user_id int,\\n permissions int\\n);\\n\"],\"pythondata\":[\"user_permissions = pd.DataFrame({\\n 'user_id': pd.Series(dtype='int'),\\n 'permissions': pd.Series(dtype='int')\\n})\"],\"database_schema\":{\"user_permissions\":{\"user_id\":\"INT\",\"permissions\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists user_permissions(user_id int, permissions int)",
|
||||
"Truncate table user_permissions",
|
||||
"insert into user_permissions (user_id, permissions) values ('1', '5')",
|
||||
"insert into user_permissions (user_id, permissions) values ('2', '12')",
|
||||
"insert into user_permissions (user_id, permissions) values ('3', '7')",
|
||||
"insert into user_permissions (user_id, permissions) values ('4', '3')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"user_permissions\":[\"user_id\",\"permissions\"]},\"rows\":{\"user_permissions\":[[1,5],[2,12],[3,7],[4,3]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3695",
|
||||
"questionFrontendId": "3358",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2992013,
|
||||
"title": "Books with NULL Ratings",
|
||||
"titleSlug": "books-with-null-ratings",
|
||||
"content": null,
|
||||
"translatedTitle": "评分为 NULL 的图书",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"85\", \"totalSubmission\": \"89\", \"totalAcceptedRaw\": 85, \"totalSubmissionRaw\": 89, \"acRate\": \"95.5%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"books\":[\"book_id\",\"title\",\"author\",\"published_year\",\"rating\"]},\"rows\":{\"books\":[[1,\"The Great Gatsby\",\"F. Scott\",1925,4.5],[2,\"To Kill a Mockingbird\",\"Harper Lee\",1960,null],[3,\"Pride and Prejudice\",\"Jane Austen\",1813,4.8],[4,\"The Catcher in the Rye\",\"J.D. Salinger\",1951,null],[5,\"Animal Farm\",\"George Orwell\",1945,4.2],[6,\"Lord of the Flies\",\"William Golding\",1954,null]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table books (\\n book_id int,\\n title varchar(255),\\n author varchar(100),\\n published_year int,\\n rating decimal(3,1)\\n)\"],\"mssql\":[\"Create table books (\\n book_id int,\\n title varchar(255),\\n author varchar(100),\\n published_year int,\\n rating decimal(3,1)\\n)\"],\"oraclesql\":[\"Create table books (\\n book_id number,\\n title varchar2(255),\\n author varchar2(100),\\n published_year number,\\n rating number(3,1)\\n)\"],\"database\":true,\"name\":\"find_unrated_books\",\"postgresql\":[\"CREATE TABLE books (\\n book_id INTEGER,\\n title VARCHAR(255),\\n author VARCHAR(100),\\n published_year INTEGER,\\n rating NUMERIC(3, 1)\\n);\\n\"],\"pythondata\":[\"books = pd.DataFrame({ \\\"book_id\\\": pd.Series(dtype=\\\"int\\\"), \\\"title\\\": pd.Series(dtype=\\\"str\\\"), \\\"author\\\": pd.Series(dtype=\\\"str\\\"), \\\"published_year\\\": pd.Series(dtype=\\\"int\\\"), \\\"rating\\\": pd.Series(dtype=\\\"float\\\") })\\n\"],\"database_schema\":{\"books\":{\"book_id\":\"INT\",\"title\":\"VARCHAR(255)\",\"author\":\"VARCHAR(100)\",\"published_year\":\"INT\",\"rating\":\"DECIMAL(3, 1)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table books (\n book_id int,\n title varchar(255),\n author varchar(100),\n published_year int,\n rating decimal(3,1)\n)",
|
||||
"Truncate table books",
|
||||
"insert into books (book_id, title, author, published_year, rating) values ('1', 'The Great Gatsby', 'F. Scott', '1925', '4.5')",
|
||||
"insert into books (book_id, title, author, published_year, rating) values ('2', 'To Kill a Mockingbird', 'Harper Lee', '1960', NULL)",
|
||||
"insert into books (book_id, title, author, published_year, rating) values ('3', 'Pride and Prejudice', 'Jane Austen', '1813', '4.8')",
|
||||
"insert into books (book_id, title, author, published_year, rating) values ('4', 'The Catcher in the Rye', 'J.D. Salinger', '1951', NULL)",
|
||||
"insert into books (book_id, title, author, published_year, rating) values ('5', 'Animal Farm', 'George Orwell', '1945', '4.2')",
|
||||
"insert into books (book_id, title, author, published_year, rating) values ('6', 'Lord of the Flies', 'William Golding', '1954', NULL)"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.2.2 and NumPy 1.26.4<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"books\":[\"book_id\",\"title\",\"author\",\"published_year\",\"rating\"]},\"rows\":{\"books\":[[1,\"The Great Gatsby\",\"F. Scott\",1925,4.5],[2,\"To Kill a Mockingbird\",\"Harper Lee\",1960,null],[3,\"Pride and Prejudice\",\"Jane Austen\",1813,4.8],[4,\"The Catcher in the Rye\",\"J.D. Salinger\",1951,null],[5,\"Animal Farm\",\"George Orwell\",1945,4.2],[6,\"Lord of the Flies\",\"William Golding\",1954,null]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,60 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3282",
|
||||
"questionFrontendId": "2985",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2586418,
|
||||
"title": "Calculate Compressed Mean",
|
||||
"titleSlug": "calculate-compressed-mean",
|
||||
"content": null,
|
||||
"translatedTitle": "计算订单平均商品数量",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"49\", \"totalSubmission\": \"56\", \"totalAcceptedRaw\": 49, \"totalSubmissionRaw\": 56, \"acRate\": \"87.5%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Orders\":[\"order_id\",\"item_count\",\"order_occurrences\"]},\"rows\":{\"Orders\":[[10,1,500],[11,2,1000],[12,3,800],[13,4,1000]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Orders ( order_id int, item_count int, order_occurrences int)\"],\"mssql\":[\"Create Table Orders ( order_id int, item_count int, order_occurrences int)\"],\"oraclesql\":[\"Create Table Orders ( order_id int, item_count int, order_occurrences int)\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Orders\":{\"order_id\":\"INT\",\"item_count\":\"INT\",\"order_occurrences\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Orders ( order_id int, item_count int, order_occurrences int)",
|
||||
"Truncate table Orders",
|
||||
"insert into Orders (order_id, item_count, order_occurrences) values ('10', '1', '500')",
|
||||
"insert into Orders (order_id, item_count, order_occurrences) values ('11', '2', '1000')",
|
||||
"insert into Orders (order_id, item_count, order_occurrences) values ('12', '3', '800')",
|
||||
"insert into Orders (order_id, item_count, order_occurrences) values ('13', '4', '1000')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Orders\":[\"order_id\",\"item_count\",\"order_occurrences\"]},\"rows\":{\"Orders\":[[10,1,500],[11,2,1000],[12,3,800],[13,4,1000]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3473",
|
||||
"questionFrontendId": "3166",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2791590,
|
||||
"title": "Calculate Parking Fees and Duration",
|
||||
"titleSlug": "calculate-parking-fees-and-duration",
|
||||
"content": null,
|
||||
"translatedTitle": "计算停车费与时长",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"45\", \"totalSubmission\": \"69\", \"totalAcceptedRaw\": 45, \"totalSubmissionRaw\": 69, \"acRate\": \"65.2%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"ParkingTransactions\":[\"lot_id\",\"car_id\",\"entry_time\",\"exit_time\",\"fee_paid\"]},\"rows\":{\"ParkingTransactions\":[[1,1001,\"2023-06-01 08:00:00\",\"2023-06-01 10:30:00\",5.00],[1,1001,\"2023-06-02 11:00:00\",\"2023-06-02 12:45:00\",3.00],[2,1001,\"2023-06-01 10:45:00\",\"2023-06-01 12:00:00\",6.00],[2,1002,\"2023-06-01 09:00:00\",\"2023-06-01 11:30:00\",4.00],[3,1001,\"2023-06-03 07:00:00\",\"2023-06-03 09:00:00\",4.00],[3,1002,\"2023-06-02 12:00:00\",\"2023-06-02 14:00:00\",2.00]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE If not exists ParkingTransactions (\\n lot_id INT,\\n car_id INT,\\n entry_time DATETIME,\\n exit_time DATETIME,\\n fee_paid DECIMAL(10, 2)\\n)\\n\"],\"mssql\":[\"CREATE TABLE ParkingTransactions (\\n lot_id INT,\\n car_id INT,\\n entry_time DATETIME,\\n exit_time DATETIME,\\n fee_paid DECIMAL(10, 2)\\n);\\n\"],\"oraclesql\":[\"CREATE TABLE ParkingTransactions (\\n lot_id NUMBER,\\n car_id NUMBER,\\n entry_time DATE,\\n exit_time DATE,\\n fee_paid NUMBER(10, 2)\\n)\\n\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD HH24:MI:SS'\"],\"database\":true,\"name\":\"calculate_fees_and_duration\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS ParkingTransactions (\\n lot_id INTEGER,\\n car_id INTEGER,\\n entry_time TIMESTAMP,\\n exit_time TIMESTAMP,\\n fee_paid NUMERIC(10, 2)\\n);\"],\"pythondata\":[\"ParkingTransactions = pd.DataFrame([], columns=['lot_id', 'car_id', 'entry_time', 'exit_time', 'fee_paid']).astype({\\n 'lot_id': 'Int64',\\n 'car_id': 'Int64',\\n 'entry_time': 'datetime64[ns]',\\n 'exit_time': 'datetime64[ns]',\\n 'fee_paid': 'float64'\\n})\"],\"database_schema\":{\"ParkingTransactions\":{\"lot_id\":\"INT\",\"car_id\":\"INT\",\"entry_time\":\"DATETIME\",\"exit_time\":\"DATETIME\",\"fee_paid\":\"DECIMAL(10, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE If not exists ParkingTransactions (\n lot_id INT,\n car_id INT,\n entry_time DATETIME,\n exit_time DATETIME,\n fee_paid DECIMAL(10, 2)\n)\n",
|
||||
"Truncate table ParkingTransactions",
|
||||
"insert into ParkingTransactions (lot_id, car_id, entry_time, exit_time, fee_paid) values ('1', '1001', '2023-06-01 08:00:00', '2023-06-01 10:30:00', '5.0')",
|
||||
"insert into ParkingTransactions (lot_id, car_id, entry_time, exit_time, fee_paid) values ('1', '1001', '2023-06-02 11:00:00', '2023-06-02 12:45:00', '3.0')",
|
||||
"insert into ParkingTransactions (lot_id, car_id, entry_time, exit_time, fee_paid) values ('2', '1001', '2023-06-01 10:45:00', '2023-06-01 12:00:00', '6.0')",
|
||||
"insert into ParkingTransactions (lot_id, car_id, entry_time, exit_time, fee_paid) values ('2', '1002', '2023-06-01 09:00:00', '2023-06-01 11:30:00', '4.0')",
|
||||
"insert into ParkingTransactions (lot_id, car_id, entry_time, exit_time, fee_paid) values ('3', '1001', '2023-06-03 07:00:00', '2023-06-03 09:00:00', '4.0')",
|
||||
"insert into ParkingTransactions (lot_id, car_id, entry_time, exit_time, fee_paid) values ('3', '1002', '2023-06-02 12:00:00', '2023-06-02 14:00:00', '2.0')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"ParkingTransactions\":[\"lot_id\",\"car_id\",\"entry_time\",\"exit_time\",\"fee_paid\"]},\"rows\":{\"ParkingTransactions\":[[1,1001,\"2023-06-01 08:00:00\",\"2023-06-01 10:30:00\",5.00],[1,1001,\"2023-06-02 11:00:00\",\"2023-06-02 12:45:00\",3.00],[2,1001,\"2023-06-01 10:45:00\",\"2023-06-01 12:00:00\",6.00],[2,1002,\"2023-06-01 09:00:00\",\"2023-06-01 11:30:00\",4.00],[3,1001,\"2023-06-03 07:00:00\",\"2023-06-03 09:00:00\",4.00],[3,1002,\"2023-06-02 12:00:00\",\"2023-06-02 14:00:00\",2.00]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,64 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3609",
|
||||
"questionFrontendId": "3293",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2920566,
|
||||
"title": "Calculate Product Final Price",
|
||||
"titleSlug": "calculate-product-final-price",
|
||||
"content": null,
|
||||
"translatedTitle": "计算产品最终价格",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"21\", \"totalSubmission\": \"24\", \"totalAcceptedRaw\": 21, \"totalSubmissionRaw\": 24, \"acRate\": \"87.5%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Products\":[\"product_id\",\"category\",\"price\"],\"Discounts\":[\"category\",\"discount\"]},\"rows\":{\"Products\":[[1,\"Electronics\",1000],[2,\"Clothing\",50],[3,\"Electronics\",1200],[4,\"Home\",500]],\"Discounts\":[[\"Electronics\",10],[\"Clothing\",20]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists Products (product_id int, category varchar(50), price int)\",\"Create table if not exists Discounts(category varchar(50), discount int)\"],\"mssql\":[\"Create table Products (product_id int, category varchar(50), price int)\",\"Create table Discounts(category varchar(50), discount int)\"],\"oraclesql\":[\"Create table Products (product_id Number, category varchar2(50), price Number)\",\"Create table Discounts(category varchar2(50), discount Number)\"],\"database\":true,\"name\":\"calculate_final_prices\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Products (\\n product_id INT,\\n category VARCHAR(50),\\n price INT\\n);\\n\",\"CREATE TABLE IF NOT EXISTS Discounts (\\n category VARCHAR(50),\\n discount INT\\n);\\n\"],\"pythondata\":[\"Products = pd.DataFrame(columns=['product_id', 'category', 'price'], dtype=int)\\n\",\"Discounts = pd.DataFrame({'category': pd.Series(dtype='str'), 'discount': pd.Series(dtype='int')})\\n\"],\"database_schema\":{\"Products\":{\"product_id\":\"INT\",\"category\":\"VARCHAR(50)\",\"price\":\"INT\"},\"Discounts\":{\"category\":\"VARCHAR(50)\",\"discount\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists Products (product_id int, category varchar(50), price int)",
|
||||
"Create table if not exists Discounts(category varchar(50), discount int)",
|
||||
"Truncate table Products",
|
||||
"insert into Products (product_id, category, price) values ('1', 'Electronics', '1000')",
|
||||
"insert into Products (product_id, category, price) values ('2', 'Clothing', '50')",
|
||||
"insert into Products (product_id, category, price) values ('3', 'Electronics', '1200')",
|
||||
"insert into Products (product_id, category, price) values ('4', 'Home', '500')",
|
||||
"Truncate table Discounts",
|
||||
"insert into Discounts (category, discount) values ('Electronics', '10')",
|
||||
"insert into Discounts (category, discount) values ('Clothing', '20')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Products\":[\"product_id\",\"category\",\"price\"],\"Discounts\":[\"category\",\"discount\"]},\"rows\":{\"Products\":[[1,\"Electronics\",1000],[2,\"Clothing\",50],[3,\"Electronics\",1200],[4,\"Home\",500]],\"Discounts\":[[\"Electronics\",10],[\"Clothing\",20]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,61 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3369",
|
||||
"questionFrontendId": "3061",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2658813,
|
||||
"title": "Calculate Trapping Rain Water",
|
||||
"titleSlug": "calculate-trapping-rain-water",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"8\", \"totalSubmission\": \"8\", \"totalAcceptedRaw\": 8, \"totalSubmissionRaw\": 8, \"acRate\": \"100.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Heights\":[\"id\",\"height\"]},\"rows\":{\"Heights\":[[1,0],[2,1],[3,0],[4,2],[5,1],[6,0],[7,1],[8,3],[9,2],[10,1],[11,2],[12,1]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if not Exists Heights(id int, height int)\"],\"mssql\":[\"Create Table Heights(id int,height int)\"],\"oraclesql\":[\"Create Table Heights(id int,height int)\"],\"database\":true,\"name\":\"calculate_trapped_rain_water\",\"postgresql\":[\"CREATE TABLE Heights(\\n id int,\\n height int\\n);\\n\"],\"pythondata\":[\"Heights = pd.DataFrame([], columns=['id', 'height']).astype({'id':'Int64', 'height':'Int64'})\\n\"],\"database_schema\":{\"Heights\":{\"id\":\"INT\",\"height\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if not Exists Heights(id int, height int)",
|
||||
"Truncate table Heights",
|
||||
"insert into Heights (id, height) values ('1', '0')",
|
||||
"insert into Heights (id, height) values ('2', '1')",
|
||||
"insert into Heights (id, height) values ('3', '0')",
|
||||
"insert into Heights (id, height) values ('4', '2')",
|
||||
"insert into Heights (id, height) values ('5', '1')",
|
||||
"insert into Heights (id, height) values ('6', '0')",
|
||||
"insert into Heights (id, height) values ('7', '1')",
|
||||
"insert into Heights (id, height) values ('8', '3')",
|
||||
"insert into Heights (id, height) values ('9', '2')",
|
||||
"insert into Heights (id, height) values ('10', '1')",
|
||||
"insert into Heights (id, height) values ('11', '2')",
|
||||
"insert into Heights (id, height) values ('12', '1')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Heights\":[\"id\",\"height\"]},\"rows\":{\"Heights\":[[1,0],[2,1],[3,0],[4,2],[5,1],[6,0],[7,1],[8,3],[9,2],[10,1],[11,2],[12,1]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,64 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3549",
|
||||
"questionFrontendId": "3236",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2861886,
|
||||
"title": "CEO Subordinate Hierarchy",
|
||||
"titleSlug": "ceo-subordinate-hierarchy",
|
||||
"content": null,
|
||||
"translatedTitle": "首席执行官下属层级",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"45\", \"totalSubmission\": \"57\", \"totalAcceptedRaw\": 45, \"totalSubmissionRaw\": 57, \"acRate\": \"78.9%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Employees\":[\"employee_id\",\"employee_name\",\"manager_id\",\"salary\"]},\"rows\":{\"Employees\":[[1,\"Alice\",null,150000],[2,\"Bob\",1,120000],[3,\"Charlie\",1,110000],[4,\"David\",2,105000],[5,\"Eve\",2,100000],[6,\"Frank\",3,95000],[7,\"Grace\",3,98000],[8,\"Helen\",5,90000]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists employees(employee_id int, employee_name varchar(100), manager_id int, salary int)\"],\"mssql\":[\"Create table employees(employee_id int, employee_name varchar(100), manager_id int, salary int)\"],\"oraclesql\":[\"Create table employees(employee_id NUMBER, employee_name varchar2(100), manager_id NUMBER, salary NUMBER)\"],\"database\":true,\"name\":\"find_subordinates\",\"manual\":false,\"postgresql\":[\"CREATE TABLE IF NOT EXISTS employees (\\n employee_id INT,\\n employee_name VARCHAR(100),\\n manager_id INT,\\n salary INT\\n);\\n\"],\"pythondata\":[\"Employees = pd.DataFrame(columns=['employee_id', 'employee_name', 'manager_id', 'salary']).astype({\\n 'employee_id': pd.Int64Dtype(),\\n 'employee_name': 'str',\\n 'manager_id': pd.Int64Dtype(),\\n 'salary': pd.Int64Dtype()\\n})\"],\"database_schema\":{\"employees\":{\"employee_id\":\"INT\",\"employee_name\":\"VARCHAR(100)\",\"manager_id\":\"INT\",\"salary\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists employees(employee_id int, employee_name varchar(100), manager_id int, salary int)",
|
||||
"Truncate table Employees",
|
||||
"insert into Employees (employee_id, employee_name, manager_id, salary) values ('1', 'Alice', 'None', '150000')",
|
||||
"insert into Employees (employee_id, employee_name, manager_id, salary) values ('2', 'Bob', '1', '120000')",
|
||||
"insert into Employees (employee_id, employee_name, manager_id, salary) values ('3', 'Charlie', '1', '110000')",
|
||||
"insert into Employees (employee_id, employee_name, manager_id, salary) values ('4', 'David', '2', '105000')",
|
||||
"insert into Employees (employee_id, employee_name, manager_id, salary) values ('5', 'Eve', '2', '100000')",
|
||||
"insert into Employees (employee_id, employee_name, manager_id, salary) values ('6', 'Frank', '3', '95000')",
|
||||
"insert into Employees (employee_id, employee_name, manager_id, salary) values ('7', 'Grace', '3', '98000')",
|
||||
"insert into Employees (employee_id, employee_name, manager_id, salary) values ('8', 'Helen', '5', '90000')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Employees\":[\"employee_id\",\"employee_name\",\"manager_id\",\"salary\"]},\"rows\":{\"Employees\":[[1,\"Alice\",null,150000],[2,\"Bob\",1,120000],[3,\"Charlie\",1,110000],[4,\"David\",2,105000],[5,\"Eve\",2,100000],[6,\"Frank\",3,95000],[7,\"Grace\",3,98000],[8,\"Helen\",5,90000]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
62
leetcode-cn/originData/[no content]class-performance.json
Normal file
62
leetcode-cn/originData/[no content]class-performance.json
Normal file
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3286",
|
||||
"questionFrontendId": "2989",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2586388,
|
||||
"title": "Class Performance",
|
||||
"titleSlug": "class-performance",
|
||||
"content": null,
|
||||
"translatedTitle": "班级表现",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"60\", \"totalSubmission\": \"60\", \"totalAcceptedRaw\": 60, \"totalSubmissionRaw\": 60, \"acRate\": \"100.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Scores\":[\"student_id\",\"student_name\",\"assignment1\",\"assignment2\",\"assignment3\"]},\"rows\":{\"Scores\":[[309,\"Owen\",88,47,87],[321,\"Claire\",98,95,37],[338,\"Julian\",100,64,43],[423,\"Peyton\",60,44,47],[896,\"David\",32,37,50],[235,\"Camila\",31,53,69]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Scores (student_id int, student_name varchar(40), assignment1 int,assignment2 int, assignment3 int)\"],\"mssql\":[\"Create Table Scores (student_id int, student_name varchar(40), assignment1 int,assignment2 int, assignment3 int)\"],\"oraclesql\":[\"Create Table Scores (student_id int, student_name varchar(40), assignment1 int,assignment2 int, assignment3 int)\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Scores\":{\"student_id\":\"INT\",\"student_name\":\"VARCHAR(40)\",\"assignment1\":\"INT\",\"assignment2\":\"INT\",\"assignment3\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Scores (student_id int, student_name varchar(40), assignment1 int,assignment2 int, assignment3 int)",
|
||||
"Truncate table Scores",
|
||||
"insert into Scores (student_id, student_name, assignment1, assignment2, assignment3) values ('309', 'Owen', '88', '47', '87')",
|
||||
"insert into Scores (student_id, student_name, assignment1, assignment2, assignment3) values ('321', 'Claire', '98', '95', '37')",
|
||||
"insert into Scores (student_id, student_name, assignment1, assignment2, assignment3) values ('338', 'Julian', '100', '64', '43')",
|
||||
"insert into Scores (student_id, student_name, assignment1, assignment2, assignment3) values ('423', 'Peyton', '60', '44', '47')",
|
||||
"insert into Scores (student_id, student_name, assignment1, assignment2, assignment3) values ('896', 'David', '32', '37', '50')",
|
||||
"insert into Scores (student_id, student_name, assignment1, assignment2, assignment3) values ('235', 'Camila', '31', '53', '69')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Scores\":[\"student_id\",\"student_name\",\"assignment1\",\"assignment2\",\"assignment3\"]},\"rows\":{\"Scores\":[[309,\"Owen\",88,47,87],[321,\"Claire\",98,95,37],[338,\"Julian\",100,64,43],[423,\"Peyton\",60,44,47],[896,\"David\",32,37,50],[235,\"Camila\",31,53,69]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,53 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3258",
|
||||
"questionFrontendId": "100176",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2644304,
|
||||
"title": "Classifying Triangles by Lengths",
|
||||
"titleSlug": "classifying-triangles-by-lengths",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 1,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"37\", \"totalSubmission\": \"48\", \"totalAcceptedRaw\": 37, \"totalSubmissionRaw\": 48, \"acRate\": \"77.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Triangles\":[\"A\",\"B\",\"C\"]},\"rows\":{\"Triangles\":[[20,20,23],[20,20,20],[20,21,22],[13,14,30]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Triangles (A int, B int, C int)\"],\"mssql\":[\"Create table Triangles (A int, B int, C int)\"],\"oraclesql\":[\"Create table Triangles (A int, B int, C int)\"],\"database\":true,\"name\":\"type_of_triangle\",\"pythondata\":[\"Triangles = pd.DataFrame([], columns=['A', 'B', 'C']).astype({'A':'Int64', 'B':'Int64', 'C':'Int64'})\\n\"],\"postgresql\":[\"Create table If Not Exists Triangles (A int, B int, C int)\\n\"],\"database_schema\":{\"Triangles\":{\"A\":\"INT\",\"B\":\"INT\",\"C\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Triangles (A int, B int, C int)",
|
||||
"Truncate table Triangles",
|
||||
"insert into Triangles (A, B, C) values ('20', '20', '23')",
|
||||
"insert into Triangles (A, B, C) values ('20', '20', '20')",
|
||||
"insert into Triangles (A, B, C) values ('20', '21', '22')",
|
||||
"insert into Triangles (A, B, C) values ('13', '14', '30')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Triangles\":[\"A\",\"B\",\"C\"]},\"rows\":{\"Triangles\":[[20,20,23],[20,20,20],[20,21,22],[13,14,30]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,61 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3448",
|
||||
"questionFrontendId": "3140",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2766869,
|
||||
"title": "Consecutive Available Seats II",
|
||||
"titleSlug": "consecutive-available-seats-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "连续空余座位 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"51\", \"totalSubmission\": \"80\", \"totalAcceptedRaw\": 51, \"totalSubmissionRaw\": 80, \"acRate\": \"63.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Cinema\":[\"seat_id\",\"free\"]},\"rows\":{\"Cinema\":[[1,1],[2,0],[3,1],[4,1],[5,1]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE if Not exists Cinema (\\n seat_id INT PRIMARY KEY AUTO_INCREMENT,\\n free BOOLEAN\\n)\\n\"],\"mssql\":[\"Create table Cinema (seat_id int primary key, free BIT)\\n\"],\"oraclesql\":[\"CREATE TABLE Cinema (\\n seat_id INT PRIMARY KEY,\\n free NUMBER(1,0)\\n)\\n\"],\"database\":true,\"name\":\"consecutive_available_seats\",\"postgresql\":[\"CREATE TABLE Cinema (\\n seat_id INT PRIMARY KEY,\\n free INT CHECK (free IN (0, 1))\\n);\"],\"pythondata\":[\"Cinema = pd.DataFrame({'seat_id': pd.Series(dtype='int'), 'free': pd.Series(dtype='bool')})\"],\"database_schema\":{\"Cinema\":{\"seat_id\":\"INT\",\"free\":\"BOOLEAN\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE if Not exists Cinema (\n seat_id INT PRIMARY KEY AUTO_INCREMENT,\n free BOOLEAN\n)\n",
|
||||
"Truncate table Cinema",
|
||||
"insert into Cinema (seat_id, free) values ('1', '1')",
|
||||
"insert into Cinema (seat_id, free) values ('2', '0')",
|
||||
"insert into Cinema (seat_id, free) values ('3', '1')",
|
||||
"insert into Cinema (seat_id, free) values ('4', '1')",
|
||||
"insert into Cinema (seat_id, free) values ('5', '1')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Cinema\":[\"seat_id\",\"free\"]},\"rows\":{\"Cinema\":[[1,1],[2,0],[3,1],[4,1],[5,1]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -0,0 +1,66 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3539",
|
||||
"questionFrontendId": "3230",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2852426,
|
||||
"title": "Customer Purchasing Behavior Analysis",
|
||||
"titleSlug": "customer-purchasing-behavior-analysis",
|
||||
"content": null,
|
||||
"translatedTitle": "客户购买行为分析",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"55\", \"totalSubmission\": \"162\", \"totalAcceptedRaw\": 55, \"totalSubmissionRaw\": 162, \"acRate\": \"34.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Transactions\":[\"transaction_id\",\"customer_id\",\"product_id\",\"transaction_date\",\"amount\"],\"Products\":[\"product_id\",\"category\",\"price\"]},\"rows\":{\"Transactions\":[[1,101,1,\"2023-01-01\",100.00],[2,101,2,\"2023-01-15\",150.00],[3,102,1,\"2023-01-01\",100.00],[4,102,3,\"2023-01-22\",200.00],[5,101,3,\"2023-02-10\",200.00]],\"Products\":[[1,\"A\",100.00],[2,\"B\",150.00],[3,\"C\",200.00]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists Transactions (\\n transaction_id INT,\\n customer_id INT,\\n product_id INT,\\n transaction_date DATE,\\n amount DECIMAL(10, 2)\\n)\",\"CREATE TABLE if not exists Products (\\n product_id INT ,\\n category VARCHAR(255),\\n price DECIMAL(10, 2)\\n)\\n\"],\"mssql\":[\"CREATE TABLE Transactions (\\n transaction_id INT ,\\n customer_id INT,\\n product_id INT,\\n transaction_date DATE,\\n amount DECIMAL(10, 2)\\n)\\n\",\"\\nCREATE TABLE Products (\\n product_id INT ,\\n category VARCHAR(255),\\n price DECIMAL(10, 2)\\n)\"],\"oraclesql\":[\"CREATE TABLE Transactions (\\n transaction_id NUMBER ,\\n customer_id NUMBER,\\n product_id NUMBER,\\n transaction_date DATE,\\n amount NUMBER(10, 2)\\n)\",\"CREATE TABLE Products (\\n product_id NUMBER ,\\n category VARCHAR2(255),\\n price NUMBER(10, 2)\\n)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"analyze_customer_behavior\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Transactions (\\n transaction_id INTEGER,\\n customer_id INTEGER,\\n product_id INTEGER,\\n transaction_date DATE,\\n amount NUMERIC(10, 2)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS Products (\\n product_id INTEGER,\\n category VARCHAR(255),\\n price NUMERIC(10, 2)\\n);\\n\"],\"pythondata\":[\"Transactions = pd.DataFrame(columns=['transaction_id', 'customer_id', 'product_id', 'transaction_date', 'amount']).astype({'transaction_id': 'int', 'customer_id': 'int', 'product_id': 'int', 'transaction_date': 'datetime64[ns]', 'amount': 'float'})\",\"Products = pd.DataFrame(columns=['product_id', 'category', 'price']).astype({'product_id': 'int', 'category': 'str', 'price': 'float'})\"],\"database_schema\":{\"Transactions\":{\"transaction_id\":\"INT\",\"customer_id\":\"INT\",\"product_id\":\"INT\",\"transaction_date\":\"DATE\",\"amount\":\"DECIMAL(10, 2)\"},\"Products\":{\"product_id\":\"INT\",\"category\":\"VARCHAR(255)\",\"price\":\"DECIMAL(10, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE if not exists Transactions (\n transaction_id INT,\n customer_id INT,\n product_id INT,\n transaction_date DATE,\n amount DECIMAL(10, 2)\n)",
|
||||
"CREATE TABLE if not exists Products (\n product_id INT ,\n category VARCHAR(255),\n price DECIMAL(10, 2)\n)\n",
|
||||
"Truncate table Transactions",
|
||||
"insert into Transactions (transaction_id, customer_id, product_id, transaction_date, amount) values ('1', '101', '1', '2023-01-01', '100.0')",
|
||||
"insert into Transactions (transaction_id, customer_id, product_id, transaction_date, amount) values ('2', '101', '2', '2023-01-15', '150.0')",
|
||||
"insert into Transactions (transaction_id, customer_id, product_id, transaction_date, amount) values ('3', '102', '1', '2023-01-01', '100.0')",
|
||||
"insert into Transactions (transaction_id, customer_id, product_id, transaction_date, amount) values ('4', '102', '3', '2023-01-22', '200.0')",
|
||||
"insert into Transactions (transaction_id, customer_id, product_id, transaction_date, amount) values ('5', '101', '3', '2023-02-10', '200.0')",
|
||||
"Truncate table Products",
|
||||
"insert into Products (product_id, category, price) values ('1', 'A', '100.0')",
|
||||
"insert into Products (product_id, category, price) values ('2', 'B', '150.0')",
|
||||
"insert into Products (product_id, category, price) values ('3', 'C', '200.0')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Transactions\":[\"transaction_id\",\"customer_id\",\"product_id\",\"transaction_date\",\"amount\"],\"Products\":[\"product_id\",\"category\",\"price\"]},\"rows\":{\"Transactions\":[[1,101,1,\"2023-01-01\",100.00],[2,101,2,\"2023-01-15\",150.00],[3,102,1,\"2023-01-01\",100.00],[4,102,3,\"2023-01-22\",200.00],[5,101,3,\"2023-02-10\",200.00]],\"Products\":[[1,\"A\",100.00],[2,\"B\",150.00],[3,\"C\",200.00]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
@@ -0,0 +1,63 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3465",
|
||||
"questionFrontendId": "3156",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2783743,
|
||||
"title": "Employee Task Duration and Concurrent Tasks",
|
||||
"titleSlug": "employee-task-duration-and-concurrent-tasks",
|
||||
"content": null,
|
||||
"translatedTitle": "员工任务持续时间和并发任务",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 1,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"40\", \"totalSubmission\": \"87\", \"totalAcceptedRaw\": 40, \"totalSubmissionRaw\": 87, \"acRate\": \"46.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Tasks\":[\"task_id\",\"employee_id\",\"start_time\",\"end_time\"]},\"rows\":{\"Tasks\":[[1,1001,\"2023-05-01 08:00:00\",\"2023-05-01 09:00:00\"],[2,1001,\"2023-05-01 08:30:00\",\"2023-05-01 10:30:00\"],[3,1001,\"2023-05-01 11:00:00\",\"2023-05-01 12:00:00\"],[7,1001,\"2023-05-01 13:00:00\",\"2023-05-01 15:30:00\"],[4,1002,\"2023-05-01 09:00:00\",\"2023-05-01 10:00:00\"],[5,1002,\"2023-05-01 09:30:00\",\"2023-05-01 11:30:00\"],[6,1003,\"2023-05-01 14:00:00\",\"2023-05-01 16:00:00\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE if Not exists Tasks (\\n task_id INT ,\\n employee_id INT,\\n start_time DATETIME,\\n end_time DATETIME\\n);\"],\"mssql\":[\"CREATE TABLE Tasks (\\n task_id INT PRIMARY KEY,\\n employee_id INT,\\n start_time DATETIME,\\n end_time DATETIME\\n);\\n\"],\"oraclesql\":[\"CREATE TABLE Tasks (\\n task_id int ,\\n employee_id int,\\n start_time DATE,\\n end_time DATE\\n)\\n\\n\\n\\n\\n\\n\\n\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD HH24:MI:SS'\"],\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Tasks (\\n task_id INT,\\n employee_id INT,\\n start_time TIMESTAMP,\\n end_time TIMESTAMP\\n);\\n\"],\"pythondata\":[\"Tasks = pd.DataFrame([], columns=['task_id', 'employee_id', 'start_time', 'end_time']).astype({\\n 'task_id': 'Int64',\\n 'employee_id': 'Int64',\\n 'start_time': 'datetime64[ns]',\\n 'end_time': 'datetime64[ns]'\\n})\"],\"database\":true,\"name\":\"find_total_duration\",\"database_schema\":{\"Tasks\":{\"task_id\":\"INT\",\"employee_id\":\"INT\",\"start_time\":\"DATETIME\",\"end_time\":\"DATETIME\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE if Not exists Tasks (\n task_id INT ,\n employee_id INT,\n start_time DATETIME,\n end_time DATETIME\n);",
|
||||
"Truncate table Tasks",
|
||||
"insert into Tasks (task_id, employee_id, start_time, end_time) values ('1', '1001', '2023-05-01 08:00:00', '2023-05-01 09:00:00')",
|
||||
"insert into Tasks (task_id, employee_id, start_time, end_time) values ('2', '1001', '2023-05-01 08:30:00', '2023-05-01 10:30:00')",
|
||||
"insert into Tasks (task_id, employee_id, start_time, end_time) values ('3', '1001', '2023-05-01 11:00:00', '2023-05-01 12:00:00')",
|
||||
"insert into Tasks (task_id, employee_id, start_time, end_time) values ('7', '1001', '2023-05-01 13:00:00', '2023-05-01 15:30:00')",
|
||||
"insert into Tasks (task_id, employee_id, start_time, end_time) values ('4', '1002', '2023-05-01 09:00:00', '2023-05-01 10:00:00')",
|
||||
"insert into Tasks (task_id, employee_id, start_time, end_time) values ('5', '1002', '2023-05-01 09:30:00', '2023-05-01 11:30:00')",
|
||||
"insert into Tasks (task_id, employee_id, start_time, end_time) values ('6', '1003', '2023-05-01 14:00:00', '2023-05-01 16:00:00')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Tasks\":[\"task_id\",\"employee_id\",\"start_time\",\"end_time\"]},\"rows\":{\"Tasks\":[[1,1001,\"2023-05-01 08:00:00\",\"2023-05-01 09:00:00\"],[2,1001,\"2023-05-01 08:30:00\",\"2023-05-01 10:30:00\"],[3,1001,\"2023-05-01 11:00:00\",\"2023-05-01 12:00:00\"],[7,1001,\"2023-05-01 13:00:00\",\"2023-05-01 15:30:00\"],[4,1002,\"2023-05-01 09:00:00\",\"2023-05-01 10:00:00\"],[5,1002,\"2023-05-01 09:30:00\",\"2023-05-01 11:30:00\"],[6,1003,\"2023-05-01 14:00:00\",\"2023-05-01 16:00:00\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,59 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3357",
|
||||
"questionFrontendId": "100252",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653974,
|
||||
"title": "Employees Project Allocation",
|
||||
"titleSlug": "employees-project-allocation",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"8\", \"totalSubmission\": \"14\", \"totalAcceptedRaw\": 8, \"totalSubmissionRaw\": 14, \"acRate\": \"57.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Project\":[\"project_id\",\"employee_id\",\"workload\"],\"Employees\":[\"employee_id\",\"name\",\"team\"]},\"rows\":{\"Project\":[[1,1,45],[1,2,90],[2,3,12],[2,4,68]],\"Employees\":[[1,\"Khaled\",\"A\"],[2,\"Ali\",\"B\"],[3,\"John\",\"B\"],[4,\"Doe\",\"A\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Project (project_id int, employee_id int, workload int)\",\"Create table If Not Exists Employees (employee_id int, name varchar(20), team varchar(20))\"],\"mssql\":[\"Create table Project (project_id int, employee_id int, workload int)\",\"Create table Employees (employee_id int, name varchar(20), team varchar(20))\"],\"oraclesql\":[\"Create table Project (project_id int, employee_id int, workload int)\",\"Create table Employees (employee_id int, name varchar(20), team varchar(20))\"],\"database\":true,\"name\":\"employees_with_above_avg_workload\",\"pythondata\":[\"Project = pd.DataFrame([], columns=['project_id', 'employee_id', 'workload']).astype({'project_id':'Int64', 'employee_id':'Int64', 'workload':'Int64'})\\n\",\"Employees = pd.DataFrame([], columns=['employee_id', 'name', 'team']).astype({'employee_id':'Int64', 'name':'object', 'team':'object'})\"],\"postgresql\":[\"CREATE TABLE Project (\\n project_id int,\\n employee_id int,\\n workload int\\n);\",\"CREATE TABLE Employees (\\n employee_id int,\\n name varchar(20),\\n team varchar(20)\\n);\"],\"database_schema\":{\"Project\":{\"project_id\":\"INT\",\"employee_id\":\"INT\",\"workload\":\"INT\"},\"Employees\":{\"employee_id\":\"INT\",\"name\":\"VARCHAR(20)\",\"team\":\"VARCHAR(20)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Project (project_id int, employee_id int, workload int)",
|
||||
"Create table If Not Exists Employees (employee_id int, name varchar(20), team varchar(20))",
|
||||
"Truncate table Project",
|
||||
"insert into Project (project_id, employee_id, workload) values ('1', '1', '45')",
|
||||
"insert into Project (project_id, employee_id, workload) values ('1', '2', '90')",
|
||||
"insert into Project (project_id, employee_id, workload) values ('2', '3', '12')",
|
||||
"insert into Project (project_id, employee_id, workload) values ('2', '4', '68')",
|
||||
"Truncate table Employees",
|
||||
"insert into Employees (employee_id, name, team) values ('1', 'Khaled', 'A')",
|
||||
"insert into Employees (employee_id, name, team) values ('2', 'Ali', 'B')",
|
||||
"insert into Employees (employee_id, name, team) values ('3', 'John', 'B')",
|
||||
"insert into Employees (employee_id, name, team) values ('4', 'Doe', 'A')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Project\":[\"project_id\",\"employee_id\",\"workload\"],\"Employees\":[\"employee_id\",\"name\",\"team\"]},\"rows\":{\"Project\":[[1,1,45],[1,2,90],[2,3,12],[2,4,68]],\"Employees\":[[1,\"Khaled\",\"A\"],[2,\"Ali\",\"B\"],[3,\"John\",\"B\"],[4,\"Doe\",\"A\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3365",
|
||||
"questionFrontendId": "100260",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653967,
|
||||
"title": "Find All Unique Email Domains",
|
||||
"titleSlug": "find-all-unique-email-domains",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 1,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"40\", \"totalSubmission\": \"60\", \"totalAcceptedRaw\": 40, \"totalSubmissionRaw\": 60, \"acRate\": \"66.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Emails\":[\"id\",\"email\"]},\"rows\":{\"Emails\":[[336,\"hwkiy@test.edu\"],[489,\"adcmaf@outlook.com\"],[449,\"vrzmwyum@yahoo.com\"],[95,\"tof@test.edu\"],[320,\"jxhbagkpm@example.org\"],[411,\"zxcf@outlook.com\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Emails (id int, email varchar(255))\"],\"mssql\":[\"Create table Emails (id int, email varchar(255))\"],\"oraclesql\":[\"Create table Emails (id int, email varchar(255))\"],\"database\":true,\"name\":\"find_unique_email_domains\",\"postgresql\":[\"CREATE TABLE Emails (\\n id INT,\\n email VARCHAR(255)\\n);\"],\"pythondata\":[\"Emails = pd.DataFrame([], columns=['id', 'email']).astype({'id':'Int64', 'email':'object'})\\n\"],\"database_schema\":{\"Emails\":{\"id\":\"INT\",\"email\":\"VARCHAR(255)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Emails (id int, email varchar(255))",
|
||||
"Truncate table Emails",
|
||||
"insert into Emails (id, email) values ('336', 'hwkiy@test.edu')",
|
||||
"insert into Emails (id, email) values ('489', 'adcmaf@outlook.com')",
|
||||
"insert into Emails (id, email) values ('449', 'vrzmwyum@yahoo.com')",
|
||||
"insert into Emails (id, email) values ('95', 'tof@test.edu')",
|
||||
"insert into Emails (id, email) values ('320', 'jxhbagkpm@example.org')",
|
||||
"insert into Emails (id, email) values ('411', 'zxcf@outlook.com')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Emails\":[\"id\",\"email\"]},\"rows\":{\"Emails\":[[336,\"hwkiy@test.edu\"],[489,\"adcmaf@outlook.com\"],[449,\"vrzmwyum@yahoo.com\"],[95,\"tof@test.edu\"],[320,\"jxhbagkpm@example.org\"],[411,\"zxcf@outlook.com\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
62
leetcode-cn/originData/[no content]find-bursty-behavior.json
Normal file
62
leetcode-cn/originData/[no content]find-bursty-behavior.json
Normal file
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3400",
|
||||
"questionFrontendId": "3089",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2704231,
|
||||
"title": "Find Bursty Behavior",
|
||||
"titleSlug": "find-bursty-behavior",
|
||||
"content": null,
|
||||
"translatedTitle": "查找突发行为",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"25\", \"totalSubmission\": \"62\", \"totalAcceptedRaw\": 25, \"totalSubmissionRaw\": 62, \"acRate\": \"40.3%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\": {\"Posts\": [\"post_id\", \"user_id\", \"post_date\"]}, \"rows\": {\"Posts\": [[1, 1, \"2024-02-27\"], [2, 5, \"2024-02-06\"], [3, 3, \"2024-02-25\"], [4, 3, \"2024-02-14\"], [5, 3, \"2024-02-06\"], [6, 2, \"2024-02-25\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Posts (post_id int, user_id int, post_date date)\"],\"mssql\":[\"Create table Posts (post_id int, user_id int, post_date date)\"],\"oraclesql\":[\"Create table Posts (post_id int, user_id int, post_date date)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"find_bursty_behavior\",\"pythondata\":[\"Posts = pd.DataFrame([], columns=['post_id', 'user_id', 'post_date']).astype({'post_id':'Int64', 'user_id':'Int64', 'post_date':'datetime64[ns]'})\\n\"],\"postgresql\":[\"CREATE TABLE Posts (\\n post_id int,\\n user_id int,\\n post_date date\\n);\\n\",\"SELECT TO_CHAR(post_date, 'YYYY-MM-DD') AS formatted_post_date FROM Posts;\\n\"],\"database_schema\":{\"Posts\":{\"post_id\":\"INT\",\"user_id\":\"INT\",\"post_date\":\"DATE\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Posts (post_id int, user_id int, post_date date)",
|
||||
"Truncate table Posts",
|
||||
"insert into Posts (post_id, user_id, post_date) values ('1', '1', '2024-02-27')",
|
||||
"insert into Posts (post_id, user_id, post_date) values ('2', '5', '2024-02-06')",
|
||||
"insert into Posts (post_id, user_id, post_date) values ('3', '3', '2024-02-25')",
|
||||
"insert into Posts (post_id, user_id, post_date) values ('4', '3', '2024-02-14')",
|
||||
"insert into Posts (post_id, user_id, post_date) values ('5', '3', '2024-02-06')",
|
||||
"insert into Posts (post_id, user_id, post_date) values ('6', '2', '2024-02-25')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\": {\"Posts\": [\"post_id\", \"user_id\", \"post_date\"]}, \"rows\": {\"Posts\": [[1, 1, \"2024-02-27\"], [2, 5, \"2024-02-06\"], [3, 3, \"2024-02-25\"], [4, 3, \"2024-02-14\"], [5, 3, \"2024-02-06\"], [6, 2, \"2024-02-25\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,76 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3589",
|
||||
"questionFrontendId": "3278",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2900887,
|
||||
"title": "Find Candidates for Data Scientist Position II",
|
||||
"titleSlug": "find-candidates-for-data-scientist-position-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "寻找数据科学家职位的候选人 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"70\", \"totalSubmission\": \"132\", \"totalAcceptedRaw\": 70, \"totalSubmissionRaw\": 132, \"acRate\": \"53.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\",\"proficiency\"],\"Projects\":[\"project_id\",\"skill\",\"importance\"]},\"rows\":{\"Candidates\":[[101,\"Python\",5],[101,\"Tableau\",3],[101,\"PostgreSQL\",4],[101,\"TensorFlow\",2],[102,\"Python\",4],[102,\"Tableau\",5],[102,\"PostgreSQL\",4],[102,\"R\",4],[103,\"Python\",3],[103,\"Tableau\",5],[103,\"PostgreSQL\",5],[103,\"Spark\",4]],\"Projects\":[[501,\"Python\",4],[501,\"Tableau\",3],[501,\"PostgreSQL\",5],[502,\"Python\",3],[502,\"Tableau\",4],[502,\"R\",2]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists Candidates(candidate_id int, skill varchar(50), proficiency int)\",\"Create table if not exists Projects( project_id int, skill varchar(50), importance int)\"],\"mssql\":[\"Create table Candidates(candidate_id int, skill varchar(50), proficiency int)\",\"Create table Projects( project_id int, skill varchar(50), importance int)\"],\"oraclesql\":[\"Create table Candidates(candidate_id number, skill varchar2(50), proficiency number)\",\"Create table Projects(project_id number, skill varchar2(50), importance number)\"],\"database\":true,\"name\":\"find_best_candidates\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Candidates (\\n candidate_id INT,\\n skill VARCHAR(50),\\n proficiency INT\\n);\\n\",\"CREATE TABLE IF NOT EXISTS Projects (\\n project_id INT,\\n skill VARCHAR(50),\\n importance INT\\n);\\n\"],\"pythondata\":[\"Candidates = pd.DataFrame({\\n 'candidate_id': pd.Series(dtype='int'),\\n 'skill': pd.Series(dtype='str'),\\n 'proficiency': pd.Series(dtype='int')\\n})\",\"Projects = pd.DataFrame({\\n 'project_id': pd.Series(dtype='int'),\\n 'skill': pd.Series(dtype='str'),\\n 'importance': pd.Series(dtype='int')\\n})\"],\"database_schema\":{\"Candidates\":{\"candidate_id\":\"INT\",\"skill\":\"VARCHAR(50)\",\"proficiency\":\"INT\"},\"Projects\":{\"project_id\":\"INT\",\"skill\":\"VARCHAR(50)\",\"importance\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists Candidates(candidate_id int, skill varchar(50), proficiency int)",
|
||||
"Create table if not exists Projects( project_id int, skill varchar(50), importance int)",
|
||||
"Truncate table Candidates",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('101', 'Python', '5')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('101', 'Tableau', '3')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('101', 'PostgreSQL', '4')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('101', 'TensorFlow', '2')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('102', 'Python', '4')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('102', 'Tableau', '5')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('102', 'PostgreSQL', '4')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('102', 'R', '4')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Python', '3')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Tableau', '5')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('103', 'PostgreSQL', '5')",
|
||||
"insert into Candidates (candidate_id, skill, proficiency) values ('103', 'Spark', '4')",
|
||||
"Truncate table Projects",
|
||||
"insert into Projects (project_id, skill, importance) values ('501', 'Python', '4')",
|
||||
"insert into Projects (project_id, skill, importance) values ('501', 'Tableau', '3')",
|
||||
"insert into Projects (project_id, skill, importance) values ('501', 'PostgreSQL', '5')",
|
||||
"insert into Projects (project_id, skill, importance) values ('502', 'Python', '3')",
|
||||
"insert into Projects (project_id, skill, importance) values ('502', 'Tableau', '4')",
|
||||
"insert into Projects (project_id, skill, importance) values ('502', 'R', '2')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\",\"proficiency\"],\"Projects\":[\"project_id\",\"skill\",\"importance\"]},\"rows\":{\"Candidates\":[[101,\"Python\",5],[101,\"Tableau\",3],[101,\"PostgreSQL\",4],[101,\"TensorFlow\",2],[102,\"Python\",4],[102,\"Tableau\",5],[102,\"PostgreSQL\",4],[102,\"R\",4],[103,\"Python\",3],[103,\"Tableau\",5],[103,\"PostgreSQL\",5],[103,\"Spark\",4]],\"Projects\":[[501,\"Python\",4],[501,\"Tableau\",3],[501,\"PostgreSQL\",5],[502,\"Python\",3],[502,\"Tableau\",4],[502,\"R\",2]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,61 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3256",
|
||||
"questionFrontendId": "100174",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653973,
|
||||
"title": "Find Candidates for Data Scientist Position",
|
||||
"titleSlug": "find-candidates-for-data-scientist-position",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 1,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"54\", \"totalSubmission\": \"70\", \"totalAcceptedRaw\": 54, \"totalSubmissionRaw\": 70, \"acRate\": \"77.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\"]},\"rows\":{\"Candidates\":[[123,\"Python\"],[234,\"R\"],[123,\"Tableau\"],[123,\"PostgreSQL\"],[234,\"PowerBI\"],[234,\"SQL Server\"],[147,\"Python\"],[147,\"Tableau\"],[147,\"Java\"],[147,\"PostgreSQL\"],[256,\"Tableau\"],[102,\"DataAnalysis\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Candidates (candidate_id int, skill varchar(30))\"],\"mssql\":[\"Create table Candidates (candidate_id int, skill varchar(30))\"],\"oraclesql\":[\"Create table Candidates (candidate_id int, skill varchar(30))\"],\"database\":true,\"name\":\"find_candidates\",\"pythondata\":[\"Candidates = pd.DataFrame([], columns=['candidate_id', 'skill']).astype({'candidate_id':'Int64', 'skill':'object'})\\n\"],\"postgresql\":[\"Create table If Not Exists Candidates (candidate_id int, skill varchar(30))\\n\"],\"database_schema\":{\"Candidates\":{\"candidate_id\":\"INT\",\"skill\":\"VARCHAR(30)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Candidates (candidate_id int, skill varchar(30))",
|
||||
"Truncate table Candidates",
|
||||
"insert into Candidates (candidate_id, skill) values ('123', 'Python')",
|
||||
"insert into Candidates (candidate_id, skill) values ('234', 'R')",
|
||||
"insert into Candidates (candidate_id, skill) values ('123', 'Tableau')",
|
||||
"insert into Candidates (candidate_id, skill) values ('123', 'PostgreSQL')",
|
||||
"insert into Candidates (candidate_id, skill) values ('234', 'PowerBI')",
|
||||
"insert into Candidates (candidate_id, skill) values ('234', 'SQL Server')",
|
||||
"insert into Candidates (candidate_id, skill) values ('147', 'Python')",
|
||||
"insert into Candidates (candidate_id, skill) values ('147', 'Tableau')",
|
||||
"insert into Candidates (candidate_id, skill) values ('147', 'Java')",
|
||||
"insert into Candidates (candidate_id, skill) values ('147', 'PostgreSQL')",
|
||||
"insert into Candidates (candidate_id, skill) values ('256', 'Tableau')",
|
||||
"insert into Candidates (candidate_id, skill) values ('102', 'DataAnalysis')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Candidates\":[\"candidate_id\",\"skill\"]},\"rows\":{\"Candidates\":[[123,\"Python\"],[234,\"R\"],[123,\"Tableau\"],[123,\"PostgreSQL\"],[234,\"PowerBI\"],[234,\"SQL Server\"],[147,\"Python\"],[147,\"Tableau\"],[147,\"Java\"],[147,\"PostgreSQL\"],[256,\"Tableau\"],[102,\"DataAnalysis\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,71 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3650",
|
||||
"questionFrontendId": "3328",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2958682,
|
||||
"title": "Find Cities in Each State II",
|
||||
"titleSlug": "find-cities-in-each-state-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "查找每个州的城市 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"58\", \"totalSubmission\": \"81\", \"totalAcceptedRaw\": 58, \"totalSubmissionRaw\": 81, \"acRate\": \"71.6%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"cities\":[\"state\",\"city\"]},\"rows\":{\"cities\":[[\"New York\",\"New York City\"],[\"New York\",\"Newark\"],[\"New York\",\"Buffalo\"],[\"New York\",\"Rochester\"],[\"California\",\"San Francisco\"],[\"California\",\"Sacramento\"],[\"California\",\"San Diego\"],[\"California\",\"Los Angeles\"],[\"Texas\",\"Tyler\"],[\"Texas\",\"Temple\"],[\"Texas\",\"Taylor\"],[\"Texas\",\"Dallas\"],[\"Pennsylvania\",\"Philadelphia\"],[\"Pennsylvania\",\"Pittsburgh\"],[\"Pennsylvania\",\"Pottstown\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists cities( state varchar(100),city varchar(100))\"],\"mssql\":[\"Create table cities( state varchar(100),city varchar(100))\"],\"oraclesql\":[\"Create table cities( state varchar2(100),city varchar2(100))\"],\"database\":true,\"name\":\"state_city_analysis\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS cities (\\n state VARCHAR(100),\\n city VARCHAR(100)\\n);\\n\"],\"pythondata\":[\"cities = pd.DataFrame({\\n 'state': pd.Series(dtype='str'),\\n 'city': pd.Series(dtype='str')\\n})\"],\"database_schema\":{\"cities\":{\"state\":\"VARCHAR(100)\",\"city\":\"VARCHAR(100)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists cities( state varchar(100),city varchar(100))",
|
||||
"Truncate table cities",
|
||||
"insert into cities (state, city) values ('New York', 'New York City')",
|
||||
"insert into cities (state, city) values ('New York', 'Newark')",
|
||||
"insert into cities (state, city) values ('New York', 'Buffalo')",
|
||||
"insert into cities (state, city) values ('New York', 'Rochester')",
|
||||
"insert into cities (state, city) values ('California', 'San Francisco')",
|
||||
"insert into cities (state, city) values ('California', 'Sacramento')",
|
||||
"insert into cities (state, city) values ('California', 'San Diego')",
|
||||
"insert into cities (state, city) values ('California', 'Los Angeles')",
|
||||
"insert into cities (state, city) values ('Texas', 'Tyler')",
|
||||
"insert into cities (state, city) values ('Texas', 'Temple')",
|
||||
"insert into cities (state, city) values ('Texas', 'Taylor')",
|
||||
"insert into cities (state, city) values ('Texas', 'Dallas')",
|
||||
"insert into cities (state, city) values ('Pennsylvania', 'Philadelphia')",
|
||||
"insert into cities (state, city) values ('Pennsylvania', 'Pittsburgh')",
|
||||
"insert into cities (state, city) values ('Pennsylvania', 'Pottstown')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"cities\":[\"state\",\"city\"]},\"rows\":{\"cities\":[[\"New York\",\"New York City\"],[\"New York\",\"Newark\"],[\"New York\",\"Buffalo\"],[\"New York\",\"Rochester\"],[\"California\",\"San Francisco\"],[\"California\",\"Sacramento\"],[\"California\",\"San Diego\"],[\"California\",\"Los Angeles\"],[\"Texas\",\"Tyler\"],[\"Texas\",\"Temple\"],[\"Texas\",\"Taylor\"],[\"Texas\",\"Dallas\"],[\"Pennsylvania\",\"Philadelphia\"],[\"Pennsylvania\",\"Pittsburgh\"],[\"Pennsylvania\",\"Pottstown\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,58 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3505",
|
||||
"questionFrontendId": "3198",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2821350,
|
||||
"title": "Find Cities in Each State",
|
||||
"titleSlug": "find-cities-in-each-state",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"2\", \"totalSubmission\": \"3\", \"totalAcceptedRaw\": 2, \"totalSubmissionRaw\": 3, \"acRate\": \"66.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"cities\":[\"state\",\"city\"]},\"rows\":{\"cities\":[[\"California\",\"Los Angeles\"],[\"California\",\"San Francisco\"],[\"California\",\"San Diego\"],[\"Texas\",\"Houston\"],[\"Texas\",\"Austin\"],[\"Texas\",\"Dallas\"],[\"New York\",\"New York City\"],[\"New York\",\"Buffalo\"],[\"New York\",\"Rochester\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists cities( state varchar(100),city varchar(100))\"],\"mssql\":[\"Create table cities( state varchar(100),city varchar(100))\"],\"oraclesql\":[\"Create table cities( state varchar2(100),city varchar2(100))\"],\"database\":true,\"name\":\"find_cities\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS cities (\\n state VARCHAR(100),\\n city VARCHAR(100)\\n);\"],\"pythondata\":[\"cities = pd.DataFrame(columns=['state', 'city'])\"],\"database_schema\":{\"cities\":{\"state\":\"VARCHAR(100)\",\"city\":\"VARCHAR(100)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists cities( state varchar(100),city varchar(100))",
|
||||
"Truncate table cities",
|
||||
"insert into cities (state, city) values ('California', 'Los Angeles')",
|
||||
"insert into cities (state, city) values ('California', 'San Francisco')",
|
||||
"insert into cities (state, city) values ('California', 'San Diego')",
|
||||
"insert into cities (state, city) values ('Texas', 'Houston')",
|
||||
"insert into cities (state, city) values ('Texas', 'Austin')",
|
||||
"insert into cities (state, city) values ('Texas', 'Dallas')",
|
||||
"insert into cities (state, city) values ('New York', 'New York City')",
|
||||
"insert into cities (state, city) values ('New York', 'Buffalo')",
|
||||
"insert into cities (state, city) values ('New York', 'Rochester')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"cities\":[\"state\",\"city\"]},\"rows\":{\"cities\":[[\"California\",\"Los Angeles\"],[\"California\",\"San Francisco\"],[\"California\",\"San Diego\"],[\"Texas\",\"Houston\"],[\"Texas\",\"Austin\"],[\"Texas\",\"Dallas\"],[\"New York\",\"New York City\"],[\"New York\",\"Buffalo\"],[\"New York\",\"Rochester\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,67 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3284",
|
||||
"questionFrontendId": "2987",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2586420,
|
||||
"title": "Find Expensive Cities",
|
||||
"titleSlug": "find-expensive-cities",
|
||||
"content": null,
|
||||
"translatedTitle": "寻找房价最贵的城市",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"43\", \"totalSubmission\": \"46\", \"totalAcceptedRaw\": 43, \"totalSubmissionRaw\": 46, \"acRate\": \"93.5%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Listings\":[\"listing_id\",\"city\",\"price\"]},\"rows\":{\"Listings\":[[113,\"LosAngeles\",7560386],[136,\"SanFrancisco\",2380268],[92,\"Chicago\",9833209],[60,\"Chicago\",5147582],[8,\"Chicago\",5274441],[79,\"SanFrancisco\",8372065],[37,\"Chicago\",7939595],[53,\"LosAngeles\",4965123],[178,\"SanFrancisco\",999207],[51,\"NewYork\",5951718],[121,\"NewYork\",2893760]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Listings (listing_id int, city varchar(50), price int)\"],\"mssql\":[\"Create Table Listings (listing_id int, city varchar(50), price int)\"],\"oraclesql\":[\"Create Table Listings (listing_id int, city varchar(50), price int)\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Listings\":{\"listing_id\":\"INT\",\"city\":\"VARCHAR(50)\",\"price\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Listings (listing_id int, city varchar(50), price int)",
|
||||
"Truncate table Listings",
|
||||
"insert into Listings (listing_id, city, price) values ('113', 'LosAngeles', '7560386')",
|
||||
"insert into Listings (listing_id, city, price) values ('136', 'SanFrancisco', '2380268')",
|
||||
"insert into Listings (listing_id, city, price) values ('92', 'Chicago', '9833209')",
|
||||
"insert into Listings (listing_id, city, price) values ('60', 'Chicago', '5147582')",
|
||||
"insert into Listings (listing_id, city, price) values ('8', 'Chicago', '5274441')",
|
||||
"insert into Listings (listing_id, city, price) values ('79', 'SanFrancisco', '8372065')",
|
||||
"insert into Listings (listing_id, city, price) values ('37', 'Chicago', '7939595')",
|
||||
"insert into Listings (listing_id, city, price) values ('53', 'LosAngeles', '4965123')",
|
||||
"insert into Listings (listing_id, city, price) values ('178', 'SanFrancisco', '999207')",
|
||||
"insert into Listings (listing_id, city, price) values ('51', 'NewYork', '5951718')",
|
||||
"insert into Listings (listing_id, city, price) values ('121', 'NewYork', '2893760')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Listings\":[\"listing_id\",\"city\",\"price\"]},\"rows\":{\"Listings\":[[113,\"LosAngeles\",7560386],[136,\"SanFrancisco\",2380268],[92,\"Chicago\",9833209],[60,\"Chicago\",5147582],[8,\"Chicago\",5274441],[79,\"SanFrancisco\",8372065],[37,\"Chicago\",7939595],[53,\"LosAngeles\",4965123],[178,\"SanFrancisco\",999207],[51,\"NewYork\",5951718],[121,\"NewYork\",2893760]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
73
leetcode-cn/originData/[no content]find-longest-calls.json
Normal file
73
leetcode-cn/originData/[no content]find-longest-calls.json
Normal file
@@ -0,0 +1,73 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3432",
|
||||
"questionFrontendId": "3124",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2750525,
|
||||
"title": "Find Longest Calls",
|
||||
"titleSlug": "find-longest-calls",
|
||||
"content": null,
|
||||
"translatedTitle": "查找最长的电话",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"50\", \"totalSubmission\": \"83\", \"totalAcceptedRaw\": 50, \"totalSubmissionRaw\": 83, \"acRate\": \"60.2%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Contacts\":[\"id\",\"first_name\",\"last_name\"],\"Calls\":[\"contact_id\",\"type\",\"duration\"]},\"rows\":{\"Contacts\":[[1,\"John\",\"Doe\"],[2,\"Jane\",\"Smith\"],[3,\"Alice\",\"Johnson\"],[4,\"Michael\",\"Brown\"],[5,\"Emily\",\"Davis\"]],\"Calls\":[[1,\"incoming\",120],[1,\"outgoing\",180],[2,\"incoming\",300],[2,\"outgoing\",240],[3,\"incoming\",150],[3,\"outgoing\",360],[4,\"incoming\",420],[4,\"outgoing\",200],[5,\"incoming\",180],[5,\"outgoing\",280]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if Not Exists Contacts(id int, first_name varchar(20), last_name varchar(20))\",\"Create table if Not Exists Calls(contact_id int, type ENUM('incoming', 'outgoing'), duration int)\"],\"mssql\":[\"Create table Contacts(id int, first_name varchar(20), last_name varchar(20))\",\"Create table Calls(contact_id int, type varchar(20) NOT NULL CHECK (type in ('incoming' , 'outgoing')), duration int)\"],\"oraclesql\":[\"Create table Contacts(id int, first_name varchar(20), last_name varchar(20))\",\"Create table Calls(contact_id int, type varchar(20) NOT NULL CHECK (type in ('incoming' , 'outgoing')), duration int)\"],\"database\":true,\"name\":\"find_longest_calls\",\"pythondata\":[\"Contacts = pd.DataFrame([], columns=['id', 'first_name', 'last_name']).astype({'id':'Int64', 'first_name':'object', 'last_name':'object'})\\n\",\"Calls = pd.DataFrame([], columns=['contact_id', 'type', 'duration']).astype({'contact_id': 'Int64', 'type': 'category', 'duration': 'Int64'})\\n\"],\"postgresql\":[\"CREATE TABLE Contacts (\\n id SERIAL PRIMARY KEY,\\n first_name VARCHAR(20),\\n last_name VARCHAR(20)\\n);\\n\",\"CREATE TABLE Calls (\\n contact_id INT,\\n type VARCHAR(20) NOT NULL CHECK (type IN ('incoming', 'outgoing')),\\n duration INT\\n);\\n\"],\"manual\":true,\"database_schema\":{\"Contacts\":{\"id\":\"INT\",\"first_name\":\"VARCHAR(20)\",\"last_name\":\"VARCHAR(20)\"},\"Calls\":{\"contact_id\":\"INT\",\"type\":\"ENUM('incoming', 'outgoing')\",\"duration\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if Not Exists Contacts(id int, first_name varchar(20), last_name varchar(20))",
|
||||
"Create table if Not Exists Calls(contact_id int, type ENUM('incoming', 'outgoing'), duration int)",
|
||||
"Truncate table Contacts",
|
||||
"insert into Contacts (id, first_name, last_name) values ('1', 'John', 'Doe')",
|
||||
"insert into Contacts (id, first_name, last_name) values ('2', 'Jane', 'Smith')",
|
||||
"insert into Contacts (id, first_name, last_name) values ('3', 'Alice', 'Johnson')",
|
||||
"insert into Contacts (id, first_name, last_name) values ('4', 'Michael', 'Brown')",
|
||||
"insert into Contacts (id, first_name, last_name) values ('5', 'Emily', 'Davis')",
|
||||
"Truncate table Calls",
|
||||
"insert into Calls (contact_id, type, duration) values ('1', 'incoming', '120')",
|
||||
"insert into Calls (contact_id, type, duration) values ('1', 'outgoing', '180')",
|
||||
"insert into Calls (contact_id, type, duration) values ('2', 'incoming', '300')",
|
||||
"insert into Calls (contact_id, type, duration) values ('2', 'outgoing', '240')",
|
||||
"insert into Calls (contact_id, type, duration) values ('3', 'incoming', '150')",
|
||||
"insert into Calls (contact_id, type, duration) values ('3', 'outgoing', '360')",
|
||||
"insert into Calls (contact_id, type, duration) values ('4', 'incoming', '420')",
|
||||
"insert into Calls (contact_id, type, duration) values ('4', 'outgoing', '200')",
|
||||
"insert into Calls (contact_id, type, duration) values ('5', 'incoming', '180')",
|
||||
"insert into Calls (contact_id, type, duration) values ('5', 'outgoing', '280')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Contacts\":[\"id\",\"first_name\",\"last_name\"],\"Calls\":[\"contact_id\",\"type\",\"duration\"]},\"rows\":{\"Contacts\":[[1,\"John\",\"Doe\"],[2,\"Jane\",\"Smith\"],[3,\"Alice\",\"Johnson\"],[4,\"Michael\",\"Brown\"],[5,\"Emily\",\"Davis\"]],\"Calls\":[[1,\"incoming\",120],[1,\"outgoing\",180],[2,\"incoming\",300],[2,\"outgoing\",240],[3,\"incoming\",150],[3,\"outgoing\",360],[4,\"incoming\",420],[4,\"outgoing\",200],[5,\"incoming\",180],[5,\"outgoing\",280]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3585",
|
||||
"questionFrontendId": "3268",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2895162,
|
||||
"title": "Find Overlapping Shifts II",
|
||||
"titleSlug": "find-overlapping-shifts-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "查找重叠的班次 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"90\", \"totalSubmission\": \"127\", \"totalAcceptedRaw\": 90, \"totalSubmissionRaw\": 127, \"acRate\": \"70.9%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\": {\"EmployeeShifts\":[\"employee_id\",\"start_time\",\"end_time\"]},\"rows\":{\"EmployeeShifts\":[[1,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"],[1,\"2023-10-01 15:00:00\",\"2023-10-01 23:00:00\"],[1,\"2023-10-01 16:00:00\",\"2023-10-02 00:00:00\"],[2,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"],[2,\"2023-10-01 11:00:00\",\"2023-10-01 19:00:00\"],[3,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists EmployeeShifts(employee_id int, start_time datetime, end_time datetime)\"],\"mssql\":[\"Create table EmployeeShifts(employee_id int, start_time datetime, end_time datetime)\"],\"oraclesql\":[\"Create table EmployeeShifts(employee_id number, start_time date, end_time date)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD HH24:MI:SS'\"],\"database\":true,\"name\":\"calculate_shift_overlaps\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS EmployeeShifts (\\n employee_id INT,\\n start_time TIMESTAMP,\\n end_time TIMESTAMP\\n);\\n\"],\"pythondata\":[\"EmployeeShifts = pd.DataFrame({\\n 'employee_id': pd.Series(dtype='int'),\\n 'start_time': pd.Series(dtype='datetime64[ns]'),\\n 'end_time': pd.Series(dtype='datetime64[ns]')\\n})\"],\"database_schema\":{\"EmployeeShifts\":{\"employee_id\":\"INT\",\"start_time\":\"DATETIME\",\"end_time\":\"DATETIME\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists EmployeeShifts(employee_id int, start_time datetime, end_time datetime)",
|
||||
"Truncate table EmployeeShifts",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '2023-10-01 09:00:00', '2023-10-01 17:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '2023-10-01 15:00:00', '2023-10-01 23:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '2023-10-01 16:00:00', '2023-10-02 00:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('2', '2023-10-01 09:00:00', '2023-10-01 17:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('2', '2023-10-01 11:00:00', '2023-10-01 19:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('3', '2023-10-01 09:00:00', '2023-10-01 17:00:00')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\": {\"EmployeeShifts\":[\"employee_id\",\"start_time\",\"end_time\"]},\"rows\":{\"EmployeeShifts\":[[1,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"],[1,\"2023-10-01 15:00:00\",\"2023-10-01 23:00:00\"],[1,\"2023-10-01 16:00:00\",\"2023-10-02 00:00:00\"],[2,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"],[2,\"2023-10-01 11:00:00\",\"2023-10-01 19:00:00\"],[3,\"2023-10-01 09:00:00\",\"2023-10-01 17:00:00\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,59 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3574",
|
||||
"questionFrontendId": "3262",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2887671,
|
||||
"title": "Find Overlapping Shifts",
|
||||
"titleSlug": "find-overlapping-shifts",
|
||||
"content": null,
|
||||
"translatedTitle": "查找重叠的班次",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"49\", \"totalSubmission\": \"67\", \"totalAcceptedRaw\": 49, \"totalSubmissionRaw\": 67, \"acRate\": \"73.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"EmployeeShifts\":[\"employee_id\",\"start_time\",\"end_time\"]},\"rows\":{\"EmployeeShifts\":[[1,\"08:00:00\",\"12:00:00\"],[1,\"11:00:00\",\"15:00:00\"],[1,\"14:00:00\",\"18:00:00\"],[2,\"09:00:00\",\"17:00:00\"],[2,\"16:00:00\",\"20:00:00\"],[3,\"10:00:00\",\"12:00:00\"],[3,\"13:00:00\",\"15:00:00\"],[3,\"16:00:00\",\"18:00:00\"],[4,\"08:00:00\",\"10:00:00\"],[4,\"09:00:00\",\"11:00:00\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists EmployeeShifts(employee_id int, start_time time, end_time time)\"],\"mssql\":[\"Create table EmployeeShifts(employee_id int, start_time time, end_time time)\"],\"oraclesql\":[\"Create table EmployeeShifts(employee_id number, start_time date, end_time date)\",\"ALTER SESSION SET nls_date_format='HH24:MI:SS'\"],\"database\":true,\"name\":\"find_overlapping_shifts\",\"pythondata\":[\"EmployeeShifts = pd.DataFrame({\\n 'employee_id': pd.Series(dtype='int'),\\n 'start_time': pd.Series(dtype='datetime64[ns]'),\\n 'end_time': pd.Series(dtype='datetime64[ns]')\\n})\"],\"postgresql\":[\"CREATE TABLE IF NOT EXISTS EmployeeShifts (\\n employee_id INT,\\n start_time TIME,\\n end_time TIME\\n);\\n\"],\"database_schema\":{\"EmployeeShifts\":{\"employee_id\":\"INT\",\"start_time\":\"TIME\",\"end_time\":\"TIME\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists EmployeeShifts(employee_id int, start_time time, end_time time)",
|
||||
"Truncate table EmployeeShifts",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '08:00:00', '12:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '11:00:00', '15:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('1', '14:00:00', '18:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('2', '09:00:00', '17:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('2', '16:00:00', '20:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('3', '10:00:00', '12:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('3', '13:00:00', '15:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('3', '16:00:00', '18:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('4', '08:00:00', '10:00:00')",
|
||||
"insert into EmployeeShifts (employee_id, start_time, end_time) values ('4', '09:00:00', '11:00:00')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"EmployeeShifts\":[\"employee_id\",\"start_time\",\"end_time\"]},\"rows\":{\"EmployeeShifts\":[[1,\"08:00:00\",\"12:00:00\"],[1,\"11:00:00\",\"15:00:00\"],[1,\"14:00:00\",\"18:00:00\"],[2,\"09:00:00\",\"17:00:00\"],[2,\"16:00:00\",\"20:00:00\"],[3,\"10:00:00\",\"12:00:00\"],[3,\"13:00:00\",\"15:00:00\"],[3,\"16:00:00\",\"18:00:00\"],[4,\"08:00:00\",\"10:00:00\"],[4,\"09:00:00\",\"11:00:00\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3281",
|
||||
"questionFrontendId": "2984",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2586419,
|
||||
"title": "Find Peak Calling Hours for Each City",
|
||||
"titleSlug": "find-peak-calling-hours-for-each-city",
|
||||
"content": null,
|
||||
"translatedTitle": "找到每座城市的高峰通话时间",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"37\", \"totalSubmission\": \"54\", \"totalAcceptedRaw\": 37, \"totalSubmissionRaw\": 54, \"acRate\": \"68.5%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Calls\":[\"caller_id\",\"recipient_id\",\"call_time\",\"city\"]},\"rows\":{\"Calls\":[[8,4,\"2021-08-24 22:46:07\",\"Houston\"],[4,8,\"2021-08-24 22:57:13\",\"Houston\"],[5,1,\"2021-08-11 21:28:44\",\"Houston\"],[8,3,\"2021-08-17 22:04:15\",\"Houston\"],[11,3,\"2021-08-17 13:07:00\",\"New York\"],[8,11,\"2021-08-17 14:22:22\",\"New York\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Calls (caller_id int, recipient_id int, call_time datetime, city varchar(40))\"],\"mssql\":[\"Create table Calls (caller_id int, recipient_id int, call_time datetime, city varchar(40))\"],\"oraclesql\":[\"Create table Calls (caller_id int, recipient_id int, call_time date, city varchar(40))\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD HH24:MI:SS'\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Calls\":{\"caller_id\":\"INT\",\"recipient_id\":\"INT\",\"call_time\":\"DATETIME\",\"city\":\"VARCHAR(40)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Calls (caller_id int, recipient_id int, call_time datetime, city varchar(40))",
|
||||
"Truncate table Calls",
|
||||
"insert into Calls (caller_id, recipient_id, call_time, city) values ('8', '4', '2021-08-24 22:46:07', 'Houston')",
|
||||
"insert into Calls (caller_id, recipient_id, call_time, city) values ('4', '8', '2021-08-24 22:57:13', 'Houston')",
|
||||
"insert into Calls (caller_id, recipient_id, call_time, city) values ('5', '1', '2021-08-11 21:28:44', 'Houston')",
|
||||
"insert into Calls (caller_id, recipient_id, call_time, city) values ('8', '3', '2021-08-17 22:04:15', 'Houston')",
|
||||
"insert into Calls (caller_id, recipient_id, call_time, city) values ('11', '3', '2021-08-17 13:07:00', 'New York')",
|
||||
"insert into Calls (caller_id, recipient_id, call_time, city) values ('8', '11', '2021-08-17 14:22:22', 'New York')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Calls\":[\"caller_id\",\"recipient_id\",\"call_time\",\"city\"]},\"rows\":{\"Calls\":[[8,4,\"2021-08-24 22:46:07\",\"Houston\"],[4,8,\"2021-08-24 22:57:13\",\"Houston\"],[5,1,\"2021-08-11 21:28:44\",\"Houston\"],[8,3,\"2021-08-17 22:04:15\",\"Houston\"],[11,3,\"2021-08-17 13:07:00\",\"New York\"],[8,11,\"2021-08-17 14:22:22\",\"New York\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -0,0 +1,65 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3283",
|
||||
"questionFrontendId": "2986",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2586391,
|
||||
"title": "Find Third Transaction",
|
||||
"titleSlug": "find-third-transaction",
|
||||
"content": null,
|
||||
"translatedTitle": "找到第三笔交易",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"32\", \"totalSubmission\": \"47\", \"totalAcceptedRaw\": 32, \"totalSubmissionRaw\": 47, \"acRate\": \"68.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Transactions\":[\"user_id\",\"spend\",\"transaction_date\"]},\"rows\":{\"Transactions\":[[1,65.56,\"2023-11-18 13:49:42\"],[1,96.0,\"2023-11-30 02:47:26\"],[1,7.44,\"2023-11-02 12:15:23\"],[1,49.78,\"2023-11-12 00:13:46\"],[2,40.89,\"2023-11-21 04:39:15\"],[2,100.44,\"2023-11-20 07:39:34\"],[3,37.33,\"2023-11-03 06:22:02\"],[3,13.89,\"2023-11-11 16:00:14\"],[3,7.0,\"2023-11-29 22:32:36\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Transactions (user_id int, spend decimal(5,2), transaction_date datetime) \"],\"mssql\":[\"Create Table Transactions (user_id int, spend decimal(5,2), transaction_date datetime) \"],\"oraclesql\":[\"Create Table Transactions (user_id int, spend decimal(5,2), transaction_date date) \",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD HH24:MI:SS'\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Transactions\":{\"user_id\":\"INT\",\"spend\":\"DECIMAL(5, 2)\",\"transaction_date\":\"DATETIME\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Transactions (user_id int, spend decimal(5,2), transaction_date datetime) ",
|
||||
"Truncate table Transactions",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('1', '65.56', '2023-11-18 13:49:42')",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('1', '96.0', '2023-11-30 02:47:26')",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('1', '7.44', '2023-11-02 12:15:23')",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('1', '49.78', '2023-11-12 00:13:46')",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('2', '40.89', '2023-11-21 04:39:15')",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('2', '100.44', '2023-11-20 07:39:34')",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('3', '37.33', '2023-11-03 06:22:02')",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('3', '13.89', '2023-11-11 16:00:14')",
|
||||
"insert into Transactions (user_id, spend, transaction_date) values ('3', '7.0', '2023-11-29 22:32:36')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Transactions\":[\"user_id\",\"spend\",\"transaction_date\"]},\"rows\":{\"Transactions\":[[1,65.56,\"2023-11-18 13:49:42\"],[1,96.0,\"2023-11-30 02:47:26\"],[1,7.44,\"2023-11-02 12:15:23\"],[1,49.78,\"2023-11-12 00:13:46\"],[2,40.89,\"2023-11-21 04:39:15\"],[2,100.44,\"2023-11-20 07:39:34\"],[3,37.33,\"2023-11-03 06:22:02\"],[3,13.89,\"2023-11-11 16:00:14\"],[3,7.0,\"2023-11-29 22:32:36\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,72 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3624",
|
||||
"questionFrontendId": "3308",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2935114,
|
||||
"title": "Find Top Performing Driver",
|
||||
"titleSlug": "find-top-performing-driver",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"40\", \"totalSubmission\": \"66\", \"totalAcceptedRaw\": 40, \"totalSubmissionRaw\": 66, \"acRate\": \"60.6%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Drivers\":[\"driver_id\",\"name\",\"age\",\"experience\",\"accidents\"],\"Vehicles\":[\"vehicle_id\",\"driver_id\",\"model\",\"fuel_type\",\"mileage\"],\"Trips\":[\"trip_id\",\"vehicle_id\",\"distance\",\"duration\",\"rating\"]},\"rows\":{\"Drivers\":[[1,\"Alice\",34,10,1],[2,\"Bob\",45,20,3],[3,\"Charlie\",28,5,0]],\"Vehicles\":[[100,1,\"Sedan\",\"Gasoline\",20000],[101,2,\"SUV\",\"Electric\",30000],[102,3,\"Coupe\",\"Gasoline\",15000]],\"Trips\":[[201,100,50,30,5],[202,100,30,20,4],[203,101,100,60,4],[204,101,80,50,5],[205,102,40,30,5],[206,102,60,40,5]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE If not exists Drivers (\\n driver_id INT ,\\n name VARCHAR(100),\\n age INT,\\n experience INT,\\n accidents INT\\n)\",\"CREATE TABLE If not exists Vehicles (\\n vehicle_id INT ,\\n driver_id INT,\\n model VARCHAR(100),\\n fuel_type VARCHAR(50),\\n mileage INT)\",\"CREATE TABLE If not exists Trips (\\n trip_id INT ,\\n vehicle_id INT,\\n distance INT,\\n duration INT,\\n rating INT\\n)\"],\"mssql\":[\"CREATE TABLE Drivers (\\n driver_id INT,\\n name NVARCHAR(100),\\n age INT,\\n experience INT,\\n accidents INT\\n)\",\"CREATE TABLE Vehicles (\\n vehicle_id INT,\\n driver_id INT,\\n model NVARCHAR(100),\\n fuel_type NVARCHAR(50),\\n mileage INT\\n)\",\"CREATE TABLE Trips (\\n trip_id INT,\\n vehicle_id INT,\\n distance INT,\\n duration INT,\\n rating INT CHECK (rating BETWEEN 1 AND 5)\\n)\"],\"oraclesql\":[\"CREATE TABLE Drivers (\\n driver_id NUMBER,\\n name VARCHAR2(100),\\n age NUMBER,\\n experience NUMBER,\\n accidents NUMBER\\n)\",\"CREATE TABLE Vehicles (\\n vehicle_id NUMBER,\\n driver_id NUMBER,\\n model VARCHAR2(100),\\n fuel_type VARCHAR2(50),\\n mileage NUMBER\\n)\",\"\\nCREATE TABLE Trips (\\n trip_id NUMBER,\\n vehicle_id NUMBER,\\n distance NUMBER,\\n duration NUMBER,\\n rating NUMBER )\"],\"database\":true,\"name\":\"get_top_performing_drivers\",\"pythondata\":[\"Drivers = pd.DataFrame({\\n 'driver_id': pd.Series(dtype='int'),\\n 'name': pd.Series(dtype='str'),\\n 'age': pd.Series(dtype='int'),\\n 'experience': pd.Series(dtype='int'),\\n 'accidents': pd.Series(dtype='int')\\n})\",\"Vehicles = pd.DataFrame({\\n 'vehicle_id': pd.Series(dtype='int'),\\n 'driver_id': pd.Series(dtype='int'),\\n 'model': pd.Series(dtype='str'),\\n 'fuel_type': pd.Series(dtype='str'),\\n 'mileage': pd.Series(dtype='int')\\n})\",\"Trips = pd.DataFrame({\\n 'trip_id': pd.Series(dtype='int'),\\n 'vehicle_id': pd.Series(dtype='int'),\\n 'distance': pd.Series(dtype='int'),\\n 'duration': pd.Series(dtype='int'),\\n 'rating': pd.Series(dtype='int')\\n})\"],\"postgresql\":[\"CREATE TABLE Drivers (\\n driver_id SERIAL PRIMARY KEY,\\n name VARCHAR(100),\\n age INT,\\n experience INT,\\n accidents INT\\n);\\n\",\"CREATE TABLE Vehicles (\\n vehicle_id SERIAL PRIMARY KEY,\\n driver_id INT,\\n model VARCHAR(100),\\n fuel_type VARCHAR(50),\\n mileage INT\\n);\\n\",\"CREATE TABLE Trips (\\n trip_id SERIAL PRIMARY KEY,\\n vehicle_id INT,\\n distance INT,\\n duration INT,\\n rating INT CHECK (rating BETWEEN 1 AND 5)\\n);\\n\",\"TRUNCATE TABLE Vehicles, Drivers;\\n\"],\"database_schema\":{\"Drivers\":{\"driver_id\":\"INT\",\"name\":\"VARCHAR(100)\",\"age\":\"INT\",\"experience\":\"INT\",\"accidents\":\"INT\"},\"Vehicles\":{\"vehicle_id\":\"INT\",\"driver_id\":\"INT\",\"model\":\"VARCHAR(100)\",\"fuel_type\":\"VARCHAR(50)\",\"mileage\":\"INT\"},\"Trips\":{\"trip_id\":\"INT\",\"vehicle_id\":\"INT\",\"distance\":\"INT\",\"duration\":\"INT\",\"rating\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE If not exists Drivers (\n driver_id INT ,\n name VARCHAR(100),\n age INT,\n experience INT,\n accidents INT\n)",
|
||||
"CREATE TABLE If not exists Vehicles (\n vehicle_id INT ,\n driver_id INT,\n model VARCHAR(100),\n fuel_type VARCHAR(50),\n mileage INT)",
|
||||
"CREATE TABLE If not exists Trips (\n trip_id INT ,\n vehicle_id INT,\n distance INT,\n duration INT,\n rating INT\n)",
|
||||
"Truncate table Drivers",
|
||||
"insert into Drivers (driver_id, name, age, experience, accidents) values ('1', 'Alice', '34', '10', '1')",
|
||||
"insert into Drivers (driver_id, name, age, experience, accidents) values ('2', 'Bob', '45', '20', '3')",
|
||||
"insert into Drivers (driver_id, name, age, experience, accidents) values ('3', 'Charlie', '28', '5', '0')",
|
||||
"Truncate table Vehicles",
|
||||
"insert into Vehicles (vehicle_id, driver_id, model, fuel_type, mileage) values ('100', '1', 'Sedan', 'Gasoline', '20000')",
|
||||
"insert into Vehicles (vehicle_id, driver_id, model, fuel_type, mileage) values ('101', '2', 'SUV', 'Electric', '30000')",
|
||||
"insert into Vehicles (vehicle_id, driver_id, model, fuel_type, mileage) values ('102', '3', 'Coupe', 'Gasoline', '15000')",
|
||||
"Truncate table Trips",
|
||||
"insert into Trips (trip_id, vehicle_id, distance, duration, rating) values ('201', '100', '50', '30', '5')",
|
||||
"insert into Trips (trip_id, vehicle_id, distance, duration, rating) values ('202', '100', '30', '20', '4')",
|
||||
"insert into Trips (trip_id, vehicle_id, distance, duration, rating) values ('203', '101', '100', '60', '4')",
|
||||
"insert into Trips (trip_id, vehicle_id, distance, duration, rating) values ('204', '101', '80', '50', '5')",
|
||||
"insert into Trips (trip_id, vehicle_id, distance, duration, rating) values ('205', '102', '40', '30', '5')",
|
||||
"insert into Trips (trip_id, vehicle_id, distance, duration, rating) values ('206', '102', '60', '40', '5')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Drivers\":[\"driver_id\",\"name\",\"age\",\"experience\",\"accidents\"],\"Vehicles\":[\"vehicle_id\",\"driver_id\",\"model\",\"fuel_type\",\"mileage\"],\"Trips\":[\"trip_id\",\"vehicle_id\",\"distance\",\"duration\",\"rating\"]},\"rows\":{\"Drivers\":[[1,\"Alice\",34,10,1],[2,\"Bob\",45,20,3],[3,\"Charlie\",28,5,0]],\"Vehicles\":[[100,1,\"Sedan\",\"Gasoline\",20000],[101,2,\"SUV\",\"Electric\",30000],[102,3,\"Coupe\",\"Gasoline\",15000]],\"Trips\":[[201,100,50,30,5],[202,100,30,20,4],[203,101,100,60,4],[204,101,80,50,5],[205,102,40,30,5],[206,102,60,40,5]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,77 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3503",
|
||||
"questionFrontendId": "3188",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2814944,
|
||||
"title": "Find Top Scoring Students II",
|
||||
"titleSlug": "find-top-scoring-students-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "查找得分最高的学生 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"57\", \"totalSubmission\": \"106\", \"totalAcceptedRaw\": 57, \"totalSubmissionRaw\": 106, \"acRate\": \"53.8%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"major\"],\"courses\":[\"course_id\",\"name\",\"credits\",\"major\",\"mandatory\"],\"enrollments\":[\"student_id\",\"course_id\",\"semester\",\"grade\",\"GPA\"]},\"rows\":{\"students\":[[1,\"Alice\",\"Computer Science\"],[2,\"Bob\",\"Computer Science\"],[3,\"Charlie\",\"Mathematics\"],[4,\"David\",\"Mathematics\"]],\"courses\":[[101,\"Algorithms\",3,\"Computer Science\",\"Yes\"],[102,\"Data Structures\",3,\"Computer Science\",\"Yes\"],[103,\"Calculus\",4,\"Mathematics\",\"Yes\"],[104,\"Linear Algebra\",4,\"Mathematics\",\"Yes\"],[105,\"Machine Learning\",3,\"Computer Science\",\"No\"],[106,\"Probability\",3,\"Mathematics\",\"No\"],[107,\"Operating Systems\",3,\"Computer Science\",\"No\"],[108,\"Statistics\",3,\"Mathematics\",\"No\"]],\"enrollments\":[[1,101,\"Fall 2023\",\"A\",4.0],[1,102,\"Spring 2023\",\"A\",4.0],[1,105,\"Spring 2023\",\"A\",4.0],[1,107,\"Fall 2023\",\"B\",3.5],[2,101,\"Fall 2023\",\"A\",4.0],[2,102,\"Spring 2023\",\"B\",3.0],[3,103,\"Fall 2023\",\"A\",4.0],[3,104,\"Spring 2023\",\"A\",4.0],[3,106,\"Spring 2023\",\"A\",4.0],[3,108,\"Fall 2023\",\"B\",3.5],[4,103,\"Fall 2023\",\"B\",3.0],[4,104,\"Spring 2023\",\"B\",3.0]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists students (\\n student_id INT ,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n)\",\"CREATE TABLE if not exists courses (\\n course_id INT ,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255),\\n mandatory ENUM('yes', 'no') DEFAULT 'no'\\n)\",\"CREATE TABLE if not exists enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10),\\nGPA decimal(3,2)\\n\\n);\"],\"mssql\":[\"CREATE TABLE students (\\n student_id INT ,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n)\",\"CREATE TABLE courses (\\n course_id INT PRIMARY KEY,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255),\\n mandatory VARCHAR(3) CHECK (mandatory IN ('yes', 'no')) DEFAULT 'no'\\n)\",\"CREATE TABLE enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(1),\\n GPA DECIMAL(3,2)\\n)\"],\"oraclesql\":[\"CREATE TABLE students (\\n student_id NUMBER ,\\n name VARCHAR2(255),\\n major VARCHAR2(255)\\n)\",\"CREATE TABLE courses (\\n course_id NUMBER ,\\n name VARCHAR2(255),\\n credits NUMBER,\\n major VARCHAR2(255),\\n mandatory VARCHAR2(3) CHECK (mandatory IN ('Yes', 'No')) \\n)\",\"CREATE TABLE enrollments (\\n student_id NUMBER,\\n course_id NUMBER,\\n semester VARCHAR2(255),\\n grade VARCHAR2(1),\\n GPA Number (3,2)\\n)\"],\"database\":true,\"name\":\"find_top_scoring_students\",\"pythondata\":[\"students = pd.DataFrame([], columns=['student_id', 'name', 'major']).astype({\\n 'student_id': 'Int64', # Nullable integer type for student_id\\n 'name': 'string', # String type for names\\n 'major': 'string' # String type for majors\\n})\",\"courses = pd.DataFrame([], columns=['course_id', 'name', 'credits', 'major', 'mandatory']).astype({'course_id': 'Int64', 'name': 'string', 'credits': 'Int64', 'major': 'string', 'mandatory': 'string'})\\n\\n # pd.CategoricalDtype(categories=['yes', 'no'])\\n\",\"enrollments = pd.DataFrame([], columns=['student_id', 'course_id', 'semester', 'grade', 'GPA']).astype({'student_id': 'Int64', 'course_id': 'Int64', 'semester': 'string', 'grade': 'string', 'GPA': 'float'})\\n\"],\"postgresql\":[\"CREATE TABLE IF NOT EXISTS students (\\n student_id SERIAL,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n);\",\"CREATE TABLE courses (\\n course_id INTEGER, -- or SERIAL if you want auto-increment\\n name VARCHAR(255),\\n credits INTEGER, -- or NUMERIC if you need decimal places\\n major VARCHAR(255),\\n mandatory VARCHAR(3) CHECK (mandatory IN ('Yes', 'No'))\\n);\\n\",\"CREATE TABLE IF NOT EXISTS enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10),\\n GPA NUMERIC(3,2)\\n);\\n\"],\"database_schema\":{\"students\":{\"student_id\":\"INT\",\"name\":\"VARCHAR(255)\",\"major\":\"VARCHAR(255)\"},\"courses\":{\"course_id\":\"INT\",\"name\":\"VARCHAR(255)\",\"credits\":\"INT\",\"major\":\"VARCHAR(255)\",\"mandatory\":\"ENUM('yes', 'no')\"},\"enrollments\":{\"student_id\":\"INT\",\"course_id\":\"INT\",\"semester\":\"VARCHAR(255)\",\"grade\":\"VARCHAR(10)\",\"GPA\":\"DECIMAL(3, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE if not exists students (\n student_id INT ,\n name VARCHAR(255),\n major VARCHAR(255)\n)",
|
||||
"CREATE TABLE if not exists courses (\n course_id INT ,\n name VARCHAR(255),\n credits INT,\n major VARCHAR(255),\n mandatory ENUM('yes', 'no') DEFAULT 'no'\n)",
|
||||
"CREATE TABLE if not exists enrollments (\n student_id INT,\n course_id INT,\n semester VARCHAR(255),\n grade VARCHAR(10),\nGPA decimal(3,2)\n\n);",
|
||||
"Truncate table students",
|
||||
"insert into students (student_id, name, major) values ('1', 'Alice', 'Computer Science')",
|
||||
"insert into students (student_id, name, major) values ('2', 'Bob', 'Computer Science')",
|
||||
"insert into students (student_id, name, major) values ('3', 'Charlie', 'Mathematics')",
|
||||
"insert into students (student_id, name, major) values ('4', 'David', 'Mathematics')",
|
||||
"Truncate table courses",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('101', 'Algorithms', '3', 'Computer Science', 'Yes')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('102', 'Data Structures', '3', 'Computer Science', 'Yes')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('103', 'Calculus', '4', 'Mathematics', 'Yes')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('104', 'Linear Algebra', '4', 'Mathematics', 'Yes')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('105', 'Machine Learning', '3', 'Computer Science', 'No')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('106', 'Probability', '3', 'Mathematics', 'No')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('107', 'Operating Systems', '3', 'Computer Science', 'No')",
|
||||
"insert into courses (course_id, name, credits, major, mandatory) values ('108', 'Statistics', '3', 'Mathematics', 'No')",
|
||||
"Truncate table enrollments",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('1', '101', 'Fall 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('1', '102', 'Spring 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('1', '105', 'Spring 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('1', '107', 'Fall 2023', 'B', '3.5')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('2', '101', 'Fall 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('2', '102', 'Spring 2023', 'B', '3.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('3', '103', 'Fall 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('3', '104', 'Spring 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('3', '106', 'Spring 2023', 'A', '4.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('3', '108', 'Fall 2023', 'B', '3.5')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('4', '103', 'Fall 2023', 'B', '3.0')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade, GPA) values ('4', '104', 'Spring 2023', 'B', '3.0')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"major\"],\"courses\":[\"course_id\",\"name\",\"credits\",\"major\",\"mandatory\"],\"enrollments\":[\"student_id\",\"course_id\",\"semester\",\"grade\",\"GPA\"]},\"rows\":{\"students\":[[1,\"Alice\",\"Computer Science\"],[2,\"Bob\",\"Computer Science\"],[3,\"Charlie\",\"Mathematics\"],[4,\"David\",\"Mathematics\"]],\"courses\":[[101,\"Algorithms\",3,\"Computer Science\",\"Yes\"],[102,\"Data Structures\",3,\"Computer Science\",\"Yes\"],[103,\"Calculus\",4,\"Mathematics\",\"Yes\"],[104,\"Linear Algebra\",4,\"Mathematics\",\"Yes\"],[105,\"Machine Learning\",3,\"Computer Science\",\"No\"],[106,\"Probability\",3,\"Mathematics\",\"No\"],[107,\"Operating Systems\",3,\"Computer Science\",\"No\"],[108,\"Statistics\",3,\"Mathematics\",\"No\"]],\"enrollments\":[[1,101,\"Fall 2023\",\"A\",4.0],[1,102,\"Spring 2023\",\"A\",4.0],[1,105,\"Spring 2023\",\"A\",4.0],[1,107,\"Fall 2023\",\"B\",3.5],[2,101,\"Fall 2023\",\"A\",4.0],[2,102,\"Spring 2023\",\"B\",3.0],[3,103,\"Fall 2023\",\"A\",4.0],[3,104,\"Spring 2023\",\"A\",4.0],[3,106,\"Spring 2023\",\"A\",4.0],[3,108,\"Fall 2023\",\"B\",3.5],[4,103,\"Fall 2023\",\"B\",3.0],[4,104,\"Spring 2023\",\"B\",3.0]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,76 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3488",
|
||||
"questionFrontendId": "3182",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2805903,
|
||||
"title": "Find Top Scoring Students",
|
||||
"titleSlug": "find-top-scoring-students",
|
||||
"content": null,
|
||||
"translatedTitle": "查找得分最高的学生",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"66\", \"totalSubmission\": \"131\", \"totalAcceptedRaw\": 66, \"totalSubmissionRaw\": 131, \"acRate\": \"50.4%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"major\"],\"courses\":[\"course_id\",\"name\",\"credits\",\"major\"],\"enrollments\":[\"student_id\",\"course_id\",\"semester\",\"grade\"]},\"rows\":{\"students\":[[1,\"Alice\",\"Computer Science\"],[2,\"Bob\",\"Computer Science\"],[3,\"Charlie\",\"Mathematics\"],[4,\"David\",\"Mathematics\"]],\"courses\":[[101,\"Algorithms\",3,\"Computer Science\"],[102,\"Data Structures\",3,\"Computer Science\"],[103,\"Calculus\",4,\"Mathematics\"],[104,\"Linear Algebra\",4,\"Mathematics\"]],\"enrollments\":[[1,101,\"Fall 2023\",\"A\"],[1,102,\"Fall 2023\",\"A\"],[2,101,\"Fall 2023\",\"B\"],[2,102,\"Fall 2023\",\"A\"],[3,103,\"Fall 2023\",\"A\"],[3,104,\"Fall 2023\",\"A\"],[4,103,\"Fall 2023\",\"A\"],[4,104,\"Fall 2023\",\"B\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists students (\\n student_id INT ,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n)\",\"CREATE TABLE if not exists courses (\\n course_id INT ,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255)\\n)\\n\",\"CREATE TABLE if not exists enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10)\\n\\n);\"],\"mssql\":[\"CREATE TABLE students (\\n student_id INT ,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n)\",\"CREATE TABLE courses (\\n course_id INT ,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255)\\n)\\n\",\"CREATE TABLE enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10)\\n\\n);\"],\"oraclesql\":[\"CREATE TABLE students (\\n student_id NUMBER ,\\n name VARCHAR2(255),\\n major VARCHAR2(255)\\n)\",\"CREATE TABLE courses (\\n course_id NUMBER,\\n name VARCHAR2(255),\\n credits NUMBER,\\n major VARCHAR2(255)\\n)\",\"CREATE TABLE enrollments (\\n student_id NUMBER,\\n course_id NUMBER,\\n semester VARCHAR2(255),\\n grade VARCHAR2(10) \\n \\n)\"],\"database\":true,\"name\":\"find_top_scoring_students\",\"pythondata\":[\"enrollments = pd.DataFrame([], columns=['student_id', 'course_id', 'semester', 'grade']).astype({\\n 'student_id': 'Int64', # Nullable integer type\\n 'course_id': 'Int64', # Nullable integer type\\n 'semester': 'object', # Object type for arbitrary strings\\n 'grade': 'object' # Object type for arbitrary strings\\n})\",\"students = pd.DataFrame([], columns=['student_id', 'name', 'major']).astype({\\n 'student_id': 'Int64', # Nullable integer type\\n 'name': 'object', # Object type for arbitrary strings, equivalent to VARCHAR\\n 'major': 'object' # Object type for arbitrary strings, equivalent to VARCHAR\\n})\",\"courses = pd.DataFrame([], columns=['course_id', 'name', 'credits', 'major']).astype({\\n 'course_id': 'Int64', # Nullable integer type\\n 'name': 'object', # Object type for arbitrary strings, equivalent to VARCHAR\\n 'credits': 'Int64', # Nullable integer type\\n 'major': 'object' # Object type for arbitrary strings, equivalent to VARCHAR\\n})\"],\"postgresql\":[\"CREATE TABLE IF NOT EXISTS students (\\n student_id INT,\\n name VARCHAR(255),\\n major VARCHAR(255)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS courses (\\n course_id INT,\\n name VARCHAR(255),\\n credits INT,\\n major VARCHAR(255)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS enrollments (\\n student_id INT,\\n course_id INT,\\n semester VARCHAR(255),\\n grade VARCHAR(10)\\n);\\n\"],\"database_schema\":{\"students\":{\"student_id\":\"INT\",\"name\":\"VARCHAR(255)\",\"major\":\"VARCHAR(255)\"},\"courses\":{\"course_id\":\"INT\",\"name\":\"VARCHAR(255)\",\"credits\":\"INT\",\"major\":\"VARCHAR(255)\"},\"enrollments\":{\"student_id\":\"INT\",\"course_id\":\"INT\",\"semester\":\"VARCHAR(255)\",\"grade\":\"VARCHAR(10)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE if not exists students (\n student_id INT ,\n name VARCHAR(255),\n major VARCHAR(255)\n)",
|
||||
"CREATE TABLE if not exists courses (\n course_id INT ,\n name VARCHAR(255),\n credits INT,\n major VARCHAR(255)\n)\n",
|
||||
"CREATE TABLE if not exists enrollments (\n student_id INT,\n course_id INT,\n semester VARCHAR(255),\n grade VARCHAR(10)\n\n);",
|
||||
"Truncate table students",
|
||||
"insert into students (student_id, name, major) values ('1', 'Alice', 'Computer Science')",
|
||||
"insert into students (student_id, name, major) values ('2', 'Bob', 'Computer Science')",
|
||||
"insert into students (student_id, name, major) values ('3', 'Charlie', 'Mathematics')",
|
||||
"insert into students (student_id, name, major) values ('4', 'David', 'Mathematics')",
|
||||
"Truncate table courses",
|
||||
"insert into courses (course_id, name, credits, major) values ('101', 'Algorithms', '3', 'Computer Science')",
|
||||
"insert into courses (course_id, name, credits, major) values ('102', 'Data Structures', '3', 'Computer Science')",
|
||||
"insert into courses (course_id, name, credits, major) values ('103', 'Calculus', '4', 'Mathematics')",
|
||||
"insert into courses (course_id, name, credits, major) values ('104', 'Linear Algebra', '4', 'Mathematics')",
|
||||
"Truncate table enrollments",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('1', '101', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('1', '102', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('2', '101', 'Fall 2023', 'B')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('2', '102', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('3', '103', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('3', '104', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('4', '103', 'Fall 2023', 'A')",
|
||||
"insert into enrollments (student_id, course_id, semester, grade) values ('4', '104', 'Fall 2023', 'B')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"students\":[\"student_id\",\"name\",\"major\"],\"courses\":[\"course_id\",\"name\",\"credits\",\"major\"],\"enrollments\":[\"student_id\",\"course_id\",\"semester\",\"grade\"]},\"rows\":{\"students\":[[1,\"Alice\",\"Computer Science\"],[2,\"Bob\",\"Computer Science\"],[3,\"Charlie\",\"Mathematics\"],[4,\"David\",\"Mathematics\"]],\"courses\":[[101,\"Algorithms\",3,\"Computer Science\"],[102,\"Data Structures\",3,\"Computer Science\"],[103,\"Calculus\",4,\"Mathematics\"],[104,\"Linear Algebra\",4,\"Mathematics\"]],\"enrollments\":[[1,101,\"Fall 2023\",\"A\"],[1,102,\"Fall 2023\",\"A\"],[2,101,\"Fall 2023\",\"B\"],[2,102,\"Fall 2023\",\"A\"],[3,103,\"Fall 2023\",\"A\"],[3,104,\"Fall 2023\",\"A\"],[4,103,\"Fall 2023\",\"A\"],[4,104,\"Fall 2023\",\"B\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,63 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3409",
|
||||
"questionFrontendId": "3103",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2719939,
|
||||
"title": "Find Trending Hashtags II ",
|
||||
"titleSlug": "find-trending-hashtags-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "查找热门话题标签 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"10\", \"totalSubmission\": \"60\", \"totalAcceptedRaw\": 10, \"totalSubmissionRaw\": 60, \"acRate\": \"16.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Tweets\":[\"user_id\",\"tweet_id\",\"tweet\",\"tweet_date\"]},\"rows\":{\"Tweets\":[[135,13,\"Enjoying a great start to the day. #HappyDay #MorningVibes\",\"2024-02-01\"],[136,14,\"Another #HappyDay with good vibes! #FeelGood\",\"2024-02-03\"],[137,15,\"Productivity peaks! #WorkLife #ProductiveDay\",\"2024-02-04\"],[138,16,\"Exploring new tech frontiers. #TechLife #Innovation\",\"2024-02-04\"],[139,17,\"Gratitude for today's moments. #HappyDay #Thankful\",\"2024-02-05\"],[140,18,\"Innovation drives us. #TechLife #FutureTech\",\"2024-02-07\"],[141,19,\"Connecting with nature's serenity. #Nature #Peaceful\",\"2024-02-09\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Tweets (user_id int, tweet_id int, tweet_date date, tweet varchar(100))\"],\"mssql\":[\"Create table Tweets (user_id int, tweet_id int, tweet_date date, tweet varchar(100))\"],\"oraclesql\":[\"Create table Tweets (user_id int, tweet_id int, tweet_date date, tweet varchar(100))\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"find_trending_hashtags\",\"postgresql\":[\"CREATE TABLE Tweets (\\n user_id INT,\\n tweet_id INT,\\n tweet_date DATE,\\n tweet VARCHAR(100)\\n);\\n\"],\"pythondata\":[\"Tweets = pd.DataFrame([], columns=['user_id', 'tweet_id', 'tweet_date', 'tweet']).astype({'user_id':'Int64', 'tweet_id':'Int64', 'tweet_date':'datetime64[ns]', 'tweet':'object'})\\n\"],\"database_schema\":{\"Tweets\":{\"user_id\":\"INT\",\"tweet_id\":\"INT\",\"tweet_date\":\"DATE\",\"tweet\":\"VARCHAR(100)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Tweets (user_id int, tweet_id int, tweet_date date, tweet varchar(100))",
|
||||
"Truncate table Tweets",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('135', '13', 'Enjoying a great start to the day. #HappyDay #MorningVibes', '2024-02-01')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('136', '14', 'Another #HappyDay with good vibes! #FeelGood', '2024-02-03')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('137', '15', 'Productivity peaks! #WorkLife #ProductiveDay', '2024-02-04')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('138', '16', 'Exploring new tech frontiers. #TechLife #Innovation', '2024-02-04')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('139', '17', 'Gratitude for today's moments. #HappyDay #Thankful', '2024-02-05')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('140', '18', 'Innovation drives us. #TechLife #FutureTech', '2024-02-07')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('141', '19', 'Connecting with nature's serenity. #Nature #Peaceful', '2024-02-09')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Tweets\":[\"user_id\",\"tweet_id\",\"tweet\",\"tweet_date\"]},\"rows\":{\"Tweets\":[[135,13,\"Enjoying a great start to the day. #HappyDay #MorningVibes\",\"2024-02-01\"],[136,14,\"Another #HappyDay with good vibes! #FeelGood\",\"2024-02-03\"],[137,15,\"Productivity peaks! #WorkLife #ProductiveDay\",\"2024-02-04\"],[138,16,\"Exploring new tech frontiers. #TechLife #Innovation\",\"2024-02-04\"],[139,17,\"Gratitude for today's moments. #HappyDay #Thankful\",\"2024-02-05\"],[140,18,\"Innovation drives us. #TechLife #FutureTech\",\"2024-02-07\"],[141,19,\"Connecting with nature's serenity. #Nature #Peaceful\",\"2024-02-09\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,56 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3392",
|
||||
"questionFrontendId": "3087",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2693470,
|
||||
"title": "Find Trending Hashtags",
|
||||
"titleSlug": "find-trending-hashtags",
|
||||
"content": null,
|
||||
"translatedTitle": "查找热门话题标签",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"31\", \"totalSubmission\": \"63\", \"totalAcceptedRaw\": 31, \"totalSubmissionRaw\": 63, \"acRate\": \"49.2%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Tweets\":[\"user_id\",\"tweet_id\",\"tweet\",\"tweet_date\"]},\"rows\":{\"Tweets\":[[135,13,\"Enjoying a great start to the day. #HappyDay\",\"2024-02-01\"],[136,14,\"Another #HappyDay with good \",\"2024-02-03\"],[137,15,\"Productivity peaks! #WorkLife\",\"2024-02-04\"],[138,16,\"Exploring new tech frontiers. #TechLife\",\"2024-02-04\"],[139,17,\"Gratitude for today's moments. #HappyDay\",\"2024-02-05\"],[140,18,\"Innovation drives us. #TechLife\",\"2024-02-07\"],[141,19,\"Connecting with nature's serenity. #Nature\",\"2024-02-09\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Tweets (user_id int, tweet_id int, tweet_date date, tweet varchar(100))\"],\"mssql\":[\"Create table Tweets (user_id int, tweet_id int, tweet_date date, tweet varchar(100))\"],\"oraclesql\":[\"Create table Tweets (user_id int, tweet_id int, tweet_date date, tweet varchar(100))\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"find_trending_hashtags\",\"postgresql\":[\"CREATE TABLE Tweets (\\n user_id INT,\\n tweet_id INT,\\n tweet_date DATE,\\n tweet VARCHAR(100)\\n);\",\"SET DateStyle = 'ISO, MDY';\"],\"pythondata\":[\"Tweets = pd.DataFrame([], columns=['user_id', 'tweet_id', 'tweet_date', 'tweet']).astype({'user_id':'Int64', 'tweet_id':'Int64', 'tweet_date':'datetime64[ns]', 'tweet':'object'})\\n\"],\"database_schema\":{\"Tweets\":{\"user_id\":\"INT\",\"tweet_id\":\"INT\",\"tweet_date\":\"DATE\",\"tweet\":\"VARCHAR(100)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Tweets (user_id int, tweet_id int, tweet_date date, tweet varchar(100))",
|
||||
"Truncate table Tweets",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('135', '13', 'Enjoying a great start to the day. #HappyDay', '2024-02-01')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('136', '14', 'Another #HappyDay with good ', '2024-02-03')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('137', '15', 'Productivity peaks! #WorkLife', '2024-02-04')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('138', '16', 'Exploring new tech frontiers. #TechLife', '2024-02-04')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('139', '17', 'Gratitude for today's moments. #HappyDay', '2024-02-05')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('140', '18', 'Innovation drives us. #TechLife', '2024-02-07')",
|
||||
"insert into Tweets (user_id, tweet_id, tweet, tweet_date) values ('141', '19', 'Connecting with nature's serenity. #Nature', '2024-02-09')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Tweets\":[\"user_id\",\"tweet_id\",\"tweet\",\"tweet_date\"]},\"rows\":{\"Tweets\":[[135,13,\"Enjoying a great start to the day. #HappyDay\",\"2024-02-01\"],[136,14,\"Another #HappyDay with good \",\"2024-02-03\"],[137,15,\"Productivity peaks! #WorkLife\",\"2024-02-04\"],[138,16,\"Exploring new tech frontiers. #TechLife\",\"2024-02-04\"],[139,17,\"Gratitude for today's moments. #HappyDay\",\"2024-02-05\"],[140,18,\"Innovation drives us. #TechLife\",\"2024-02-07\"],[141,19,\"Connecting with nature's serenity. #Nature\",\"2024-02-09\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,53 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3703",
|
||||
"questionFrontendId": "3368",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2999592,
|
||||
"title": "First Letter Capitalization",
|
||||
"titleSlug": "first-letter-capitalization",
|
||||
"content": null,
|
||||
"translatedTitle": "首字母大写",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"32\", \"totalSubmission\": \"34\", \"totalAcceptedRaw\": 32, \"totalSubmissionRaw\": 34, \"acRate\": \"94.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"user_content\":[\"content_id\",\"content_text\"]},\"rows\":{\"user_content\":[[1,\"hello world of SQL\"],[2,\"the QUICK brown fox\"],[3,\"data science AND machine learning\"],[4,\"TOP rated programming BOOKS\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE If not exists user_content (\\n content_id INT,\\n content_text VARCHAR(255)\\n)\"],\"mssql\":[\"CREATE TABLE user_content (\\n content_id INT,\\n content_text VARCHAR(255)\\n)\"],\"oraclesql\":[\"CREATE TABLE user_content (\\n content_id NUMBER,\\n content_text VARCHAR2(255)\\n)\"],\"database\":true,\"name\":\"process_text\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS user_content (\\n content_id SERIAL PRIMARY KEY,\\n content_text VARCHAR(255)\\n);\\n\"],\"pythondata\":[\"user_content = pd.DataFrame({\\n 'content_id': pd.Series(dtype='int'),\\n 'content_text': pd.Series(dtype='str')\\n})\"],\"database_schema\":{\"user_content\":{\"content_id\":\"INT\",\"content_text\":\"VARCHAR(255)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE If not exists user_content (\n content_id INT,\n content_text VARCHAR(255)\n)",
|
||||
"Truncate table user_content",
|
||||
"insert into user_content (content_id, content_text) values ('1', 'hello world of SQL')",
|
||||
"insert into user_content (content_id, content_text) values ('2', 'the QUICK brown fox')",
|
||||
"insert into user_content (content_id, content_text) values ('3', 'data science AND machine learning')",
|
||||
"insert into user_content (content_id, content_text) values ('4', 'TOP rated programming BOOKS')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.2.2 and NumPy 1.26.4<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"user_content\":[\"content_id\",\"content_text\"]},\"rows\":{\"user_content\":[[1,\"hello world of SQL\"],[2,\"the QUICK brown fox\"],[3,\"data science AND machine learning\"],[4,\"TOP rated programming BOOKS\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
74
leetcode-cn/originData/[no content]friday-purchase-iii.json
Normal file
74
leetcode-cn/originData/[no content]friday-purchase-iii.json
Normal file
@@ -0,0 +1,74 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3424",
|
||||
"questionFrontendId": "3118",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2740389,
|
||||
"title": "Friday Purchase III ",
|
||||
"titleSlug": "friday-purchase-iii",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"33\", \"totalSubmission\": \"58\", \"totalAcceptedRaw\": 33, \"totalSubmissionRaw\": 58, \"acRate\": \"56.9%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Purchases\":[\"user_id\",\"purchase_date\",\"amount_spend\"],\"Users\":[\"user_id\",\"membership\"]},\"rows\":{\"Purchases\":[[11,\"2023-11-03\",1126],[15,\"2023-11-10\",7473],[17,\"2023-11-17\",2414],[12,\"2023-11-24\",9692],[8,\"2023-11-24\",5117],[1,\"2023-11-24\",5241],[10,\"2023-11-22\",8266],[13,\"2023-11-21\",12000]],\"Users\":[[11,\"Premium\"],[15,\"VIP\"],[17,\"Standard\"],[12,\"VIP\"],[8,\"Premium\"],[1,\"VIP\"],[10,\"Standard\"],[13,\"Premium\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Purchases( user_id int, purchase_date date, amount_spend int)\",\"Create Table if Not Exists Users (user_id int, membership enum('Standard', 'Premium', 'VIP'))\"],\"mssql\":[\"Create Table Purchases( user_id int, purchase_date date, amount_spend int)\",\"Create Table Users (user_id int, membership varchar(30) NOT NULL CHECK ( membership in ('Standard', 'Premium', 'VIP')))\"],\"oraclesql\":[\"Create Table Purchases( user_id int, purchase_date date, amount_spend int)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\",\"Create Table Users (user_id int, membership varchar(30) NOT NULL CHECK ( membership in ('Standard', 'Premium', 'VIP')))\"],\"database\":true,\"name\":\"friday_purchases\",\"postgresql\":[\"CREATE TABLE Purchases (\\n user_id int,\\n purchase_date date,\\n amount_spend int\\n);\",\"SET datestyle = 'ISO, MDY'; \\n\",\"CREATE TABLE Users (\\n user_id int,\\n membership varchar(30) NOT NULL CHECK (membership IN ('Standard', 'Premium', 'VIP'))\\n);\"],\"pythondata\":[\"Purchases = pd.DataFrame([], columns=['user_id', 'purchase_date', 'amount_spend']).astype({'user_id':'Int64', 'purchase_date':'datetime64[ns]', 'amount_spend':'Int64'})\\n\",\"Users = pd.DataFrame([], columns=['user_id', 'membership']).astype({\\n 'user_id': 'Int64',\\n 'membership': pd.CategoricalDtype(categories=['Standard', 'Premium', 'VIP'])\\n})\"],\"database_schema\":{\"Purchases\":{\"user_id\":\"INT\",\"purchase_date\":\"DATE\",\"amount_spend\":\"INT\"},\"Users\":{\"user_id\":\"INT\",\"membership\":\"ENUM('Standard', 'Premium', 'VIP')\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Purchases( user_id int, purchase_date date, amount_spend int)",
|
||||
"Create Table if Not Exists Users (user_id int, membership enum('Standard', 'Premium', 'VIP'))",
|
||||
"Truncate table Purchases",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('11', '2023-11-03', '1126')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('15', '2023-11-10', '7473')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('17', '2023-11-17', '2414')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('12', '2023-11-24', '9692')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('8', '2023-11-24', '5117')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('1', '2023-11-24', '5241')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('10', '2023-11-22', '8266')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('13', '2023-11-21', '12000')",
|
||||
"Truncate table Users",
|
||||
"insert into Users (user_id, membership) values ('11', 'Premium')",
|
||||
"insert into Users (user_id, membership) values ('15', 'VIP')",
|
||||
"insert into Users (user_id, membership) values ('17', 'Standard')",
|
||||
"insert into Users (user_id, membership) values ('12', 'VIP')",
|
||||
"insert into Users (user_id, membership) values ('8', 'Premium')",
|
||||
"insert into Users (user_id, membership) values ('1', 'VIP')",
|
||||
"insert into Users (user_id, membership) values ('10', 'Standard')",
|
||||
"insert into Users (user_id, membership) values ('13', 'Premium')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Purchases\":[\"user_id\",\"purchase_date\",\"amount_spend\"],\"Users\":[\"user_id\",\"membership\"]},\"rows\":{\"Purchases\":[[11,\"2023-11-03\",1126],[15,\"2023-11-10\",7473],[17,\"2023-11-17\",2414],[12,\"2023-11-24\",9692],[8,\"2023-11-24\",5117],[1,\"2023-11-24\",5241],[10,\"2023-11-22\",8266],[13,\"2023-11-21\",12000]],\"Users\":[[11,\"Premium\"],[15,\"VIP\"],[17,\"Standard\"],[12,\"VIP\"],[8,\"Premium\"],[1,\"VIP\"],[10,\"Standard\"],[13,\"Premium\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
64
leetcode-cn/originData/[no content]friday-purchases-i.json
Normal file
64
leetcode-cn/originData/[no content]friday-purchases-i.json
Normal file
@@ -0,0 +1,64 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3300",
|
||||
"questionFrontendId": "2993",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2591528,
|
||||
"title": "Friday Purchases I",
|
||||
"titleSlug": "friday-purchases-i",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"24\", \"totalSubmission\": \"26\", \"totalAcceptedRaw\": 24, \"totalSubmissionRaw\": 26, \"acRate\": \"92.3%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Purchases\":[\"user_id\",\"purchase_date\",\"amount_spend\"]},\"rows\":{\"Purchases\":[[11,\"2023-11-07\",1126],[15,\"2023-11-30\",7473],[17,\"2023-11-14\",2414],[12,\"2023-11-24\",9692],[8,\"2023-11-03\",5117],[1,\"2023-11-16\",5241],[10,\"2023-11-12\",8266],[13,\"2023-11-24\",12000]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Purchases( user_id int, purchase_date date, amount_spend int)\"],\"mssql\":[\"Create Table Purchases( user_id int, purchase_date date, amount_spend int)\"],\"oraclesql\":[\"Create Table Purchases( user_id int, purchase_date date, amount_spend int)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Purchases\":{\"user_id\":\"INT\",\"purchase_date\":\"DATE\",\"amount_spend\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Purchases( user_id int, purchase_date date, amount_spend int)",
|
||||
"Truncate table Purchases",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('11', '2023-11-07', '1126')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('15', '2023-11-30', '7473')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('17', '2023-11-14', '2414')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('12', '2023-11-24', '9692')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('8', '2023-11-03', '5117')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('1', '2023-11-16', '5241')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('10', '2023-11-12', '8266')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('13', '2023-11-24', '12000')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Purchases\":[\"user_id\",\"purchase_date\",\"amount_spend\"]},\"rows\":{\"Purchases\":[[11,\"2023-11-07\",1126],[15,\"2023-11-30\",7473],[17,\"2023-11-14\",2414],[12,\"2023-11-24\",9692],[8,\"2023-11-03\",5117],[1,\"2023-11-16\",5241],[10,\"2023-11-12\",8266],[13,\"2023-11-24\",12000]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
64
leetcode-cn/originData/[no content]friday-purchases-ii.json
Normal file
64
leetcode-cn/originData/[no content]friday-purchases-ii.json
Normal file
@@ -0,0 +1,64 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3301",
|
||||
"questionFrontendId": "2994",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2591527,
|
||||
"title": "Friday Purchases II ",
|
||||
"titleSlug": "friday-purchases-ii",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"17\", \"totalSubmission\": \"17\", \"totalAcceptedRaw\": 17, \"totalSubmissionRaw\": 17, \"acRate\": \"100.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Purchases\":[\"user_id\",\"purchase_date\",\"amount_spend\"]},\"rows\":{\"Purchases\":[[11,\"2023-11-07\",1126],[15,\"2023-11-30\",7473],[17,\"2023-11-14\",2414],[12,\"2023-11-24\",9692],[8,\"2023-11-03\",5117],[1,\"2023-11-16\",5241],[10,\"2023-11-12\",8266],[13,\"2023-11-24\",12000]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Purchases( user_id int, purchase_date date, amount_spend int)\"],\"mssql\":[\"Create Table Purchases( user_id int, purchase_date date, amount_spend int)\"],\"oraclesql\":[\"Create Table Purchases( user_id int, purchase_date date, amount_spend int)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Purchases\":{\"user_id\":\"INT\",\"purchase_date\":\"DATE\",\"amount_spend\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Purchases( user_id int, purchase_date date, amount_spend int)",
|
||||
"Truncate table Purchases",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('11', '2023-11-07', '1126')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('15', '2023-11-30', '7473')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('17', '2023-11-14', '2414')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('12', '2023-11-24', '9692')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('8', '2023-11-03', '5117')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('1', '2023-11-16', '5241')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('10', '2023-11-12', '8266')",
|
||||
"insert into Purchases (user_id, purchase_date, amount_spend) values ('13', '2023-11-24', '12000')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Purchases\":[\"user_id\",\"purchase_date\",\"amount_spend\"]},\"rows\":{\"Purchases\":[[11,\"2023-11-07\",1126],[15,\"2023-11-30\",7473],[17,\"2023-11-14\",2414],[12,\"2023-11-24\",9692],[8,\"2023-11-03\",5117],[1,\"2023-11-16\",5241],[10,\"2023-11-12\",8266],[13,\"2023-11-24\",12000]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,57 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3358",
|
||||
"questionFrontendId": "100253",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653965,
|
||||
"title": "Friends With No Mutual Friends",
|
||||
"titleSlug": "friends-with-no-mutual-friends",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"17\", \"totalSubmission\": \"39\", \"totalAcceptedRaw\": 17, \"totalSubmissionRaw\": 39, \"acRate\": \"43.6%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Friends\":[\"user_id1\",\"user_id2\"]},\"rows\":{\"Friends\":[[1,2],[2,3],[2,4],[1,5],[6,7],[3,4],[2,5],[8,9]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if Not Exists Friends( user_id1 int, user_id2 int)\"],\"mssql\":[\"Create Table Friends( user_id1 int, user_id2 int)\"],\"oraclesql\":[\"Create Table Friends( user_id1 int, user_id2 int)\"],\"database\":true,\"name\":\"friends_with_no_mutual_friends\",\"pythondata\":[\"Friends = pd.DataFrame([], columns=['user_id1', 'user_id2']).astype({'user_id1':'Int64', 'user_id2':'Int64'})\\n\"],\"postgresql\":[\"CREATE TABLE Friends (\\n user_id1 int,\\n user_id2 int\\n);\"],\"database_schema\":{\"Friends\":{\"user_id1\":\"INT\",\"user_id2\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if Not Exists Friends( user_id1 int, user_id2 int)",
|
||||
"Truncate table Friends",
|
||||
"insert into Friends (user_id1, user_id2) values ('1', '2')",
|
||||
"insert into Friends (user_id1, user_id2) values ('2', '3')",
|
||||
"insert into Friends (user_id1, user_id2) values ('2', '4')",
|
||||
"insert into Friends (user_id1, user_id2) values ('1', '5')",
|
||||
"insert into Friends (user_id1, user_id2) values ('6', '7')",
|
||||
"insert into Friends (user_id1, user_id2) values ('3', '4')",
|
||||
"insert into Friends (user_id1, user_id2) values ('2', '5')",
|
||||
"insert into Friends (user_id1, user_id2) values ('8', '9')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Friends\":[\"user_id1\",\"user_id2\"]},\"rows\":{\"Friends\":[[1,2],[2,3],[2,4],[1,5],[6,7],[3,4],[2,5],[8,9]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
72
leetcode-cn/originData/[no content]invalid-tweets-ii.json
Normal file
72
leetcode-cn/originData/[no content]invalid-tweets-ii.json
Normal file
@@ -0,0 +1,72 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3457",
|
||||
"questionFrontendId": "3150",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2775397,
|
||||
"title": "Invalid Tweets II",
|
||||
"titleSlug": "invalid-tweets-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "无效的推文 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"43\", \"totalSubmission\": \"51\", \"totalAcceptedRaw\": 43, \"totalSubmissionRaw\": 51, \"acRate\": \"84.3%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\": {\"Tweets\": [\"tweet_id\", \"content\"]}, \"rows\": {\"Tweets\": [[1, \"What an amazing meal @MaxPower @AlexJones @JohnDoe #Learning #Fitness #Love\"], [2, \"Learning something new every day @AnnaWilson #Learning #Foodie\"], [3, \"Never been happier about today's achievements @SaraJohnson @JohnDoe @AnnaWilson #Fashion\"], [4, \"Traveling, exploring, and living my best life @JaneSmith @JohnDoe @ChrisAnderson @AlexJones #WorkLife #Travel\"], [5, \"Work hard, play hard, and cherish every moment @AlexJones #Fashion #Foodie\"], [6, \"Never been happier about today's achievements @ChrisAnderson #Fashion #WorkLife\"], [7, \"So grateful for today's experiences @AnnaWilson @LisaTaylor @ChrisAnderson @MikeBrown #Fashion #HappyDay #WorkLife #Nature\"], [8, \"What an amazing meal @EmilyClark @AlexJones @MikeBrown #Fitness\"], [9, \"Learning something new every day @EmilyClark @AnnaWilson @MaxPower #Travel\"], [10, \"So grateful for today's experiences @ChrisAnderson #Nature\"], [11, \"So grateful for today's experiences @AlexJones #Art #WorkLife\"], [12, \"Learning something new every day @JaneSmith @MikeBrown #Travel\"], [13, \"What an amazing meal @EmilyClark @JohnDoe @LisaTaylor @MaxPower #Foodie #Fitness\"], [14, \"Work hard, play hard, and cherish every moment @LisaTaylor @SaraJohnson @MaxPower @ChrisAnderson #TechLife #Nature #Music\"], [15, \"What a beautiful day it is @EmilyClark @MaxPower @SaraJohnson #Fashion\"], [16, \"What a beautiful day it is @AnnaWilson @JaneSmith #Fashion #Love #TechLife\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Tweets(tweet_id int, content varchar(500))\"],\"mssql\":[\"Create table Tweets(tweet_id int, content varchar(500))\"],\"oraclesql\":[\"Create table Tweets(tweet_id int, content varchar(500))\"],\"database\":true,\"name\":\"find_invalid_tweets\",\"pythondata\":[\"Tweets = pd.DataFrame([], columns=['tweet_id', 'content']).astype({'tweet_id':'Int64', 'content':'object'})\"],\"postgresql\":[\"Create table If Not Exists Tweets(tweet_id int, content varchar(500))\"],\"database_schema\":{\"Tweets\":{\"tweet_id\":\"INT\",\"content\":\"VARCHAR(500)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Tweets(tweet_id int, content varchar(500))",
|
||||
"Truncate table Tweets",
|
||||
"insert into Tweets (tweet_id, content) values ('1', 'What an amazing meal @MaxPower @AlexJones @JohnDoe #Learning #Fitness #Love')",
|
||||
"insert into Tweets (tweet_id, content) values ('2', 'Learning something new every day @AnnaWilson #Learning #Foodie')",
|
||||
"insert into Tweets (tweet_id, content) values ('3', 'Never been happier about today's achievements @SaraJohnson @JohnDoe @AnnaWilson #Fashion')",
|
||||
"insert into Tweets (tweet_id, content) values ('4', 'Traveling, exploring, and living my best life @JaneSmith @JohnDoe @ChrisAnderson @AlexJones #WorkLife #Travel')",
|
||||
"insert into Tweets (tweet_id, content) values ('5', 'Work hard, play hard, and cherish every moment @AlexJones #Fashion #Foodie')",
|
||||
"insert into Tweets (tweet_id, content) values ('6', 'Never been happier about today's achievements @ChrisAnderson #Fashion #WorkLife')",
|
||||
"insert into Tweets (tweet_id, content) values ('7', 'So grateful for today's experiences @AnnaWilson @LisaTaylor @ChrisAnderson @MikeBrown #Fashion #HappyDay #WorkLife #Nature')",
|
||||
"insert into Tweets (tweet_id, content) values ('8', 'What an amazing meal @EmilyClark @AlexJones @MikeBrown #Fitness')",
|
||||
"insert into Tweets (tweet_id, content) values ('9', 'Learning something new every day @EmilyClark @AnnaWilson @MaxPower #Travel')",
|
||||
"insert into Tweets (tweet_id, content) values ('10', 'So grateful for today's experiences @ChrisAnderson #Nature')",
|
||||
"insert into Tweets (tweet_id, content) values ('11', 'So grateful for today's experiences @AlexJones #Art #WorkLife')",
|
||||
"insert into Tweets (tweet_id, content) values ('12', 'Learning something new every day @JaneSmith @MikeBrown #Travel')",
|
||||
"insert into Tweets (tweet_id, content) values ('13', 'What an amazing meal @EmilyClark @JohnDoe @LisaTaylor @MaxPower #Foodie #Fitness')",
|
||||
"insert into Tweets (tweet_id, content) values ('14', 'Work hard, play hard, and cherish every moment @LisaTaylor @SaraJohnson @MaxPower @ChrisAnderson #TechLife #Nature #Music')",
|
||||
"insert into Tweets (tweet_id, content) values ('15', 'What a beautiful day it is @EmilyClark @MaxPower @SaraJohnson #Fashion')",
|
||||
"insert into Tweets (tweet_id, content) values ('16', 'What a beautiful day it is @AnnaWilson @JaneSmith #Fashion #Love #TechLife')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\": {\"Tweets\": [\"tweet_id\", \"content\"]}, \"rows\": {\"Tweets\": [[1, \"What an amazing meal @MaxPower @AlexJones @JohnDoe #Learning #Fitness #Love\"], [2, \"Learning something new every day @AnnaWilson #Learning #Foodie\"], [3, \"Never been happier about today's achievements @SaraJohnson @JohnDoe @AnnaWilson #Fashion\"], [4, \"Traveling, exploring, and living my best life @JaneSmith @JohnDoe @ChrisAnderson @AlexJones #WorkLife #Travel\"], [5, \"Work hard, play hard, and cherish every moment @AlexJones #Fashion #Foodie\"], [6, \"Never been happier about today's achievements @ChrisAnderson #Fashion #WorkLife\"], [7, \"So grateful for today's experiences @AnnaWilson @LisaTaylor @ChrisAnderson @MikeBrown #Fashion #HappyDay #WorkLife #Nature\"], [8, \"What an amazing meal @EmilyClark @AlexJones @MikeBrown #Fitness\"], [9, \"Learning something new every day @EmilyClark @AnnaWilson @MaxPower #Travel\"], [10, \"So grateful for today's experiences @ChrisAnderson #Nature\"], [11, \"So grateful for today's experiences @AlexJones #Art #WorkLife\"], [12, \"Learning something new every day @JaneSmith @MikeBrown #Travel\"], [13, \"What an amazing meal @EmilyClark @JohnDoe @LisaTaylor @MaxPower #Foodie #Fitness\"], [14, \"Work hard, play hard, and cherish every moment @LisaTaylor @SaraJohnson @MaxPower @ChrisAnderson #TechLife #Nature #Music\"], [15, \"What a beautiful day it is @EmilyClark @MaxPower @SaraJohnson #Fashion\"], [16, \"What a beautiful day it is @AnnaWilson @JaneSmith #Fashion #Love #TechLife\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
64
leetcode-cn/originData/[no content]loan-types.json
Normal file
64
leetcode-cn/originData/[no content]loan-types.json
Normal file
@@ -0,0 +1,64 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3287",
|
||||
"questionFrontendId": "2990",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2586390,
|
||||
"title": "Loan Types",
|
||||
"titleSlug": "loan-types",
|
||||
"content": null,
|
||||
"translatedTitle": "贷款类型",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"50\", \"totalSubmission\": \"82\", \"totalAcceptedRaw\": 50, \"totalSubmissionRaw\": 82, \"acRate\": \"61.0%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Loans\":[\"loan_id\",\"user_id\",\"loan_type\"]},\"rows\":{\"Loans\":[[683,101,\"Mortgage\"],[218,101,\"AutoLoan\"],[802,101,\"Inschool\"],[593,102,\"Mortgage\"],[138,102,\"Refinance\"],[294,102,\"Inschool\"],[308,103,\"Refinance\"],[389,104,\"Mortgage\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create Table if not Exists Loans ( loan_id int, user_id int, loan_type varchar(40))\"],\"mssql\":[\"Create Table Loans (loan_id int, user_id int, loan_type varchar(40))\"],\"oraclesql\":[\"Create Table Loans ( loan_id int, user_id int, loan_type varchar(40))\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Loans\":{\"loan_id\":\"INT\",\"user_id\":\"INT\",\"loan_type\":\"VARCHAR(40)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create Table if not Exists Loans ( loan_id int, user_id int, loan_type varchar(40))",
|
||||
"Truncate table Loans",
|
||||
"insert into Loans (loan_id, user_id, loan_type) values ('683', '101', 'Mortgage')",
|
||||
"insert into Loans (loan_id, user_id, loan_type) values ('218', '101', 'AutoLoan')",
|
||||
"insert into Loans (loan_id, user_id, loan_type) values ('802', '101', 'Inschool')",
|
||||
"insert into Loans (loan_id, user_id, loan_type) values ('593', '102', 'Mortgage')",
|
||||
"insert into Loans (loan_id, user_id, loan_type) values ('138', '102', 'Refinance')",
|
||||
"insert into Loans (loan_id, user_id, loan_type) values ('294', '102', 'Inschool')",
|
||||
"insert into Loans (loan_id, user_id, loan_type) values ('308', '103', 'Refinance')",
|
||||
"insert into Loans (loan_id, user_id, loan_type) values ('389', '104', 'Mortgage')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Loans\":[\"loan_id\",\"user_id\",\"loan_type\"]},\"rows\":{\"Loans\":[[683,101,\"Mortgage\"],[218,101,\"AutoLoan\"],[802,101,\"Inschool\"],[593,102,\"Mortgage\"],[138,102,\"Refinance\"],[294,102,\"Inschool\"],[308,103,\"Refinance\"],[389,104,\"Mortgage\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,76 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3726",
|
||||
"questionFrontendId": "3390",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 3021381,
|
||||
"title": "Longest Team Pass Streak",
|
||||
"titleSlug": "longest-team-pass-streak",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"13\", \"totalSubmission\": \"22\", \"totalAcceptedRaw\": 13, \"totalSubmissionRaw\": 22, \"acRate\": \"59.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Teams\":[\"player_id\",\"team_name\"],\"Passes\":[\"pass_from\",\"time_stamp\",\"pass_to\"]},\"rows\":{\"Teams\":[[1,\"Arsenal\"],[2,\"Arsenal\"],[3,\"Arsenal\"],[4,\"Arsenal\"],[5,\"Chelsea\"],[6,\"Chelsea\"],[7,\"Chelsea\"],[8,\"Chelsea\"]],\"Passes\":[[1,\"00:05\",2],[2,\"00:07\",3],[3,\"00:08\",4],[4,\"00:10\",5],[6,\"00:15\",7],[7,\"00:17\",8],[8,\"00:20\",6],[6,\"00:22\",5],[1,\"00:25\",2],[2,\"00:27\",3]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE If not exists Teams (\\n player_id INT,\\n team_name VARCHAR(100)\\n)\\n\\n\",\"CREATE TABLE if not exists Passes (\\n pass_from INT,\\n time_stamp VARCHAR(5),\\n pass_to INT\\n)\"],\"mssql\":[\"CREATE TABLE Teams (\\n player_id INT,\\n team_name VARCHAR(100)\\n)\\n\",\"\\nCREATE TABLE Passes (\\n pass_from INT,\\n time_stamp VARCHAR(5),\\n pass_to INT\\n)\"],\"oraclesql\":[\"CREATE TABLE Teams (\\n player_id NUMBER,\\n team_name VARCHAR2(100)\\n)\\n\\n\",\"CREATE TABLE Passes (\\n pass_from NUMBER,\\n time_stamp VARCHAR2(5),\\n pass_to NUMBER\\n)\"],\"database\":true,\"name\":\"calculate_longest_streaks\",\"pythondata\":[\"Teams = pd.DataFrame(columns=[\\\"player_id\\\", \\\"team_name\\\"]).astype({\\\"player_id\\\": \\\"int\\\", \\\"team_name\\\": \\\"string\\\"})\\n\",\"Passes = pd.DataFrame(columns=[\\\"pass_from\\\", \\\"time_stamp\\\", \\\"pass_to\\\"]).astype({\\\"pass_from\\\": \\\"int\\\", \\\"time_stamp\\\": \\\"string\\\", \\\"pass_to\\\": \\\"int\\\"})\\n\"],\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Teams (\\n player_id INTEGER,\\n team_name VARCHAR(100)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS Passes (\\n pass_from INTEGER,\\n time_stamp VARCHAR(5),\\n pass_to INTEGER\\n);\\n\"],\"database_schema\":{\"Teams\":{\"player_id\":\"INT\",\"team_name\":\"VARCHAR(100)\"},\"Passes\":{\"pass_from\":\"INT\",\"time_stamp\":\"VARCHAR(5)\",\"pass_to\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE If not exists Teams (\n player_id INT,\n team_name VARCHAR(100)\n)\n\n",
|
||||
"CREATE TABLE if not exists Passes (\n pass_from INT,\n time_stamp VARCHAR(5),\n pass_to INT\n)",
|
||||
"Truncate table Teams",
|
||||
"insert into Teams (player_id, team_name) values ('1', 'Arsenal')",
|
||||
"insert into Teams (player_id, team_name) values ('2', 'Arsenal')",
|
||||
"insert into Teams (player_id, team_name) values ('3', 'Arsenal')",
|
||||
"insert into Teams (player_id, team_name) values ('4', 'Arsenal')",
|
||||
"insert into Teams (player_id, team_name) values ('5', 'Chelsea')",
|
||||
"insert into Teams (player_id, team_name) values ('6', 'Chelsea')",
|
||||
"insert into Teams (player_id, team_name) values ('7', 'Chelsea')",
|
||||
"insert into Teams (player_id, team_name) values ('8', 'Chelsea')",
|
||||
"Truncate table Passes",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('1', '00:05', '2')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('2', '00:07', '3')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('3', '00:08', '4')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('4', '00:10', '5')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('6', '00:15', '7')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('7', '00:17', '8')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('8', '00:20', '6')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('6', '00:22', '5')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('1', '00:25', '2')",
|
||||
"insert into Passes (pass_from, time_stamp, pass_to) values ('2', '00:27', '3')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.2.2 and NumPy 1.26.4<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Teams\":[\"player_id\",\"team_name\"],\"Passes\":[\"pass_from\",\"time_stamp\",\"pass_to\"]},\"rows\":{\"Teams\":[[1,\"Arsenal\"],[2,\"Arsenal\"],[3,\"Arsenal\"],[4,\"Arsenal\"],[5,\"Chelsea\"],[6,\"Chelsea\"],[7,\"Chelsea\"],[8,\"Chelsea\"]],\"Passes\":[[1,\"00:05\",2],[2,\"00:07\",3],[3,\"00:08\",4],[4,\"00:10\",5],[6,\"00:15\",7],[7,\"00:17\",8],[8,\"00:20\",6],[6,\"00:22\",5],[1,\"00:25\",2],[2,\"00:27\",3]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
@@ -0,0 +1,67 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3285",
|
||||
"questionFrontendId": "2988",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2586421,
|
||||
"title": "Manager of the Largest Department",
|
||||
"titleSlug": "manager-of-the-largest-department",
|
||||
"content": null,
|
||||
"translatedTitle": "最大部门的经理",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"40\", \"totalSubmission\": \"47\", \"totalAcceptedRaw\": 40, \"totalSubmissionRaw\": 47, \"acRate\": \"85.1%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Employees\":[\"emp_id\",\"emp_name\",\"dep_id\",\"position\"]},\"rows\":{\"Employees\":[[156,\"Michael\",107,\"Manager\"],[112,\"Lucas\",107,\"Consultant\"],[8,\"Isabella\",101,\"Manager\"],[160,\"Joseph\",100,\"Manager\"],[80,\"Aiden\",100,\"Engineer\"],[190,\"Skylar\",100,\"Freelancer\"],[196,\"Stella\",101,\"Coordinator\"],[167,\"Audrey\",100,\"Consultant\"],[97,\"Nathan\",101,\"Supervisor\"],[128,\"Ian\",101,\"Administrator\"],[81,\"Ethan\",107,\"Administrator\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists Employees ( emp_id int, emp_name varchar(50), dep_id int, position varchar(30))\"],\"mssql\":[\"Create table Employees ( emp_id int, emp_name varchar(50), dep_id int, position varchar(30))\"],\"oraclesql\":[\"Create table Employees ( emp_id int, emp_name varchar(50), dep_id int, position varchar(30))\"],\"database\":true,\"languages\":[\"mysql\",\"mssql\",\"oraclesql\"],\"database_schema\":{\"Employees\":{\"emp_id\":\"INT\",\"emp_name\":\"VARCHAR(50)\",\"dep_id\":\"INT\",\"position\":\"VARCHAR(30)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists Employees ( emp_id int, emp_name varchar(50), dep_id int, position varchar(30))",
|
||||
"Truncate table Employees",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('156', 'Michael', '107', 'Manager')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('112', 'Lucas', '107', 'Consultant')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('8', 'Isabella', '101', 'Manager')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('160', 'Joseph', '100', 'Manager')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('80', 'Aiden', '100', 'Engineer')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('190', 'Skylar', '100', 'Freelancer')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('196', 'Stella', '101', 'Coordinator')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('167', 'Audrey', '100', 'Consultant')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('97', 'Nathan', '101', 'Supervisor')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('128', 'Ian', '101', 'Administrator')",
|
||||
"insert into Employees (emp_id, emp_name, dep_id, position) values ('81', 'Ethan', '107', 'Administrator')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Employees\":[\"emp_id\",\"emp_name\",\"dep_id\",\"position\"]},\"rows\":{\"Employees\":[[156,\"Michael\",107,\"Manager\"],[112,\"Lucas\",107,\"Consultant\"],[8,\"Isabella\",101,\"Manager\"],[160,\"Joseph\",100,\"Manager\"],[80,\"Aiden\",100,\"Engineer\"],[190,\"Skylar\",100,\"Freelancer\"],[196,\"Stella\",101,\"Coordinator\"],[167,\"Audrey\",100,\"Consultant\"],[97,\"Nathan\",101,\"Supervisor\"],[128,\"Ian\",101,\"Administrator\"],[81,\"Ethan\",107,\"Administrator\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
59
leetcode-cn/originData/[no content]maximize-items.json
Normal file
59
leetcode-cn/originData/[no content]maximize-items.json
Normal file
@@ -0,0 +1,59 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3257",
|
||||
"questionFrontendId": "100175",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653972,
|
||||
"title": "Maximize Items",
|
||||
"titleSlug": "maximize-items",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Hard",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"13\", \"totalSubmission\": \"15\", \"totalAcceptedRaw\": 13, \"totalSubmissionRaw\": 15, \"acRate\": \"86.7%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Inventory\":[\"item_id\",\"item_type\",\"item_category\",\"square_footage\"]},\"rows\":{\"Inventory\":[[1374,\"prime_eligible\",\"Watches\",68.00],[4245,\"not_prime\",\"Art\",26.40],[5743,\"prime_eligible\",\"Software\",325.00],[8543,\"not_prime\",\"Clothing\",64.50],[2556,\"not_prime\",\"Shoes\",15.00],[2452,\"prime_eligible\",\"Scientific\",85.00],[3255,\"not_prime\",\"Furniture\",22.60],[1672,\"prime_eligible\",\"Beauty\",8.50],[4256,\"prime_eligible\",\"Furniture\",55.50],[6325,\"prime_eligible\",\"Food\",13.20]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table If Not Exists Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))\"],\"mssql\":[\"Create table Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))\"],\"oraclesql\":[\"Create table Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))\"],\"database\":true,\"name\":\"maximize_items\",\"pythondata\":[\"Inventory = pd.DataFrame([], columns=['item_id', 'item_type', 'item_category', 'square_footage']).astype({'item_id':'Int64', 'item_type':'object', 'item_category':'object', 'square_footage':'Float64'})\\n\"],\"postgresql\":[\"Create table If Not Exists Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))\\n\"],\"database_schema\":{\"Inventory\":{\"item_id\":\"INT\",\"item_type\":\"VARCHAR(50)\",\"item_category\":\"VARCHAR(50)\",\"square_footage\":\"DECIMAL(10, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table If Not Exists Inventory ( item_id int, item_type varchar(50), item_category varchar(50), square_footage decimal(10,2))",
|
||||
"Truncate table Inventory",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('1374', 'prime_eligible', 'Watches', '68.0')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('4245', 'not_prime', 'Art', '26.4')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('5743', 'prime_eligible', 'Software', '325.0')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('8543', 'not_prime', 'Clothing', '64.5')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('2556', 'not_prime', 'Shoes', '15.0')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('2452', 'prime_eligible', 'Scientific', '85.0')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('3255', 'not_prime', 'Furniture', '22.6')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('1672', 'prime_eligible', 'Beauty', '8.5')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('4256', 'prime_eligible', 'Furniture', '55.5')",
|
||||
"insert into Inventory (item_id, item_type, item_category, square_footage) values ('6325', 'prime_eligible', 'Food', '13.2')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Inventory\":[\"item_id\",\"item_type\",\"item_category\",\"square_footage\"]},\"rows\":{\"Inventory\":[[1374,\"prime_eligible\",\"Watches\",68.00],[4245,\"not_prime\",\"Art\",26.40],[5743,\"prime_eligible\",\"Software\",325.00],[8543,\"not_prime\",\"Clothing\",64.50],[2556,\"not_prime\",\"Shoes\",15.00],[2452,\"prime_eligible\",\"Scientific\",85.00],[3255,\"not_prime\",\"Furniture\",22.60],[1672,\"prime_eligible\",\"Beauty\",8.50],[4256,\"prime_eligible\",\"Furniture\",55.50],[6325,\"prime_eligible\",\"Food\",13.20]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
59
leetcode-cn/originData/[no content]maximum-sized-array.json
Normal file
59
leetcode-cn/originData/[no content]maximum-sized-array.json
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -0,0 +1,53 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3255",
|
||||
"questionFrontendId": "100173",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653968,
|
||||
"title": "Pizza Toppings Cost Analysis",
|
||||
"titleSlug": "pizza-toppings-cost-analysis",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"30\", \"totalSubmission\": \"42\", \"totalAcceptedRaw\": 30, \"totalSubmissionRaw\": 42, \"acRate\": \"71.4%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Toppings\":[\"topping_name\",\"cost\"]},\"rows\":{\"Toppings\":[[\"Pepperoni\",0.50],[\"Sausage\",0.70],[\"Chicken\",0.55],[\"Extra Cheese\",0.40]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists Toppings(topping_name varchar(100), cost decimal(5,2))\"],\"mssql\":[\"Create table Toppings(topping_name varchar(100), cost decimal(5,2))\"],\"oraclesql\":[\"Create table Toppings(topping_name varchar(100), cost decimal(5,2))\"],\"database\":true,\"name\":\"cost_analysis\",\"pythondata\":[\"Toppings = pd.DataFrame([], columns=['topping_name', 'cost']).astype({'topping_name':'object', 'cost':'Float64'})\\n\"],\"postgresql\":[\"Create table if not exists Toppings(topping_name varchar(100), cost decimal(5,2))\\n\"],\"database_schema\":{\"Toppings\":{\"topping_name\":\"VARCHAR(100)\",\"cost\":\"DECIMAL(5, 2)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists Toppings(topping_name varchar(100), cost decimal(5,2))",
|
||||
"Truncate table Toppings",
|
||||
"insert into Toppings (topping_name, cost) values ('Pepperoni', '0.5')",
|
||||
"insert into Toppings (topping_name, cost) values ('Sausage', '0.7')",
|
||||
"insert into Toppings (topping_name, cost) values ('Chicken', '0.55')",
|
||||
"insert into Toppings (topping_name, cost) values ('Extra Cheese', '0.4')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Toppings\":[\"topping_name\",\"cost\"]},\"rows\":{\"Toppings\":[[\"Pepperoni\",0.50],[\"Sausage\",0.70],[\"Chicken\",0.55],[\"Extra Cheese\",0.40]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,66 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3564",
|
||||
"questionFrontendId": "3252",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2876919,
|
||||
"title": "Premier League Table Ranking II",
|
||||
"titleSlug": "premier-league-table-ranking-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "英超积分榜排名 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"90\", \"totalSubmission\": \"146\", \"totalAcceptedRaw\": 90, \"totalSubmissionRaw\": 146, \"acRate\": \"61.6%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\": {\"TeamStats\": [\"team_id\", \"team_name\", \"matches_played\", \"wins\", \"draws\", \"losses\"]}, \"rows\": {\"TeamStats\": [[1, \"Chelsea\", 22, 13, 2, 7], [2, \"Nottingham Forest\", 27, 6, 6, 15], [3, \"Liverpool\", 17, 1, 8, 8], [4, \"Aston Villa\", 20, 1, 6, 13], [5, \"Fulham\", 31, 18, 1, 12], [6, \"Burnley\", 26, 6, 9, 11], [7, \"Newcastle United\", 33, 11, 10, 12], [8, \"Sheffield United\", 20, 18, 2, 0], [9, \"Luton Town\", 5, 4, 0, 1], [10, \"Everton\", 14, 2, 6, 6]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists TeamStats( team_id int, team_name varchar(100),matches_played int, wins int,draws int,losses int)\"],\"mssql\":[\"Create table TeamStats( team_id int, team_name varchar(100),matches_played int, wins int,draws int,losses int)\"],\"oraclesql\":[\"Create table TeamStats( team_id NUMBER, team_name varchar2(100),matches_played NUMBER, wins NUMBER,draws NUMBER,losses NUMBER)\"],\"postgresql\":[\"CREATE TABLE IF NOT EXISTS TeamStats (\\n team_id INT,\\n team_name VARCHAR(100),\\n matches_played INT,\\n wins INT,\\n draws INT,\\n losses INT\\n);\\n\"],\"pythondata\":[\"TeamStats = pd.DataFrame(data, columns=[\\\"team_id\\\", \\\"team_name\\\", \\\"matches_played\\\", \\\"wins\\\", \\\"draws\\\", \\\"losses\\\"]).astype({\\\"team_id\\\": \\\"int\\\", \\\"team_name\\\": \\\"string\\\", \\\"matches_played\\\": \\\"int\\\", \\\"wins\\\": \\\"int\\\", \\\"draws\\\": \\\"int\\\", \\\"losses\\\": \\\"int\\\"})\\n\"],\"database\":true,\"name\":\"calculate_team_tiers\",\"database_schema\":{\"TeamStats\":{\"team_id\":\"INT\",\"team_name\":\"VARCHAR(100)\",\"matches_played\":\"INT\",\"wins\":\"INT\",\"draws\":\"INT\",\"losses\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists TeamStats( team_id int, team_name varchar(100),matches_played int, wins int,draws int,losses int)",
|
||||
"Truncate table TeamStats",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('1', 'Chelsea', '22', '13', '2', '7')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('2', 'Nottingham Forest', '27', '6', '6', '15')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('3', 'Liverpool', '17', '1', '8', '8')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('4', 'Aston Villa', '20', '1', '6', '13')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('5', 'Fulham', '31', '18', '1', '12')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('6', 'Burnley', '26', '6', '9', '11')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('7', 'Newcastle United', '33', '11', '10', '12')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('8', 'Sheffield United', '20', '18', '2', '0')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('9', 'Luton Town', '5', '4', '0', '1')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('10', 'Everton', '14', '2', '6', '6')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\": {\"TeamStats\": [\"team_id\", \"team_name\", \"matches_played\", \"wins\", \"draws\", \"losses\"]}, \"rows\": {\"TeamStats\": [[1, \"Chelsea\", 22, 13, 2, 7], [2, \"Nottingham Forest\", 27, 6, 6, 15], [3, \"Liverpool\", 17, 1, 8, 8], [4, \"Aston Villa\", 20, 1, 6, 13], [5, \"Fulham\", 31, 18, 1, 12], [6, \"Burnley\", 26, 6, 9, 11], [7, \"Newcastle United\", 33, 11, 10, 12], [8, \"Sheffield United\", 20, 18, 2, 0], [9, \"Luton Town\", 5, 4, 0, 1], [10, \"Everton\", 14, 2, 6, 6]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,66 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3642",
|
||||
"questionFrontendId": "3322",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2949746,
|
||||
"title": "Premier League Table Ranking III",
|
||||
"titleSlug": "premier-league-table-ranking-iii",
|
||||
"content": null,
|
||||
"translatedTitle": "英超积分榜排名 III",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"84\", \"totalSubmission\": \"104\", \"totalAcceptedRaw\": 84, \"totalSubmissionRaw\": 104, \"acRate\": \"80.8%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"SeasonStats\":[\"season_id\",\"team_id\",\"team_name\",\"matches_played\",\"wins\",\"draws\",\"losses\",\"goals_for\",\"goals_against\"]},\"rows\":{\"SeasonStats\":[[2021,1,\"Manchester City\",38,29,6,3,99,26],[2021,2,\"Liverpool\",38,28,8,2,94,26],[2021,3,\"Chelsea\",38,21,11,6,76,33],[2021,4,\"Tottenham\",38,22,5,11,69,40],[2021,5,\"Arsenal\",38,22,3,13,61,48],[2022,1,\"Manchester City\",38,28,5,5,94,33],[2022,2,\"Arsenal\",38,26,6,6,88,43],[2022,3,\"Manchester United\",38,23,6,9,58,43],[2022,4,\"Newcastle\",38,19,14,5,68,33],[2022,5,\"Liverpool\",38,19,10,9,75,47]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE SeasonStats (\\n season_id INT,\\n team_id INT,\\n team_name VARCHAR(255),\\n matches_played INT,\\n wins INT,\\n draws INT,\\n losses INT,\\n goals_for INT,\\n goals_against INT\\n)\"],\"mssql\":[\"CREATE TABLE SeasonStats (\\n season_id INT,\\n team_id INT,\\n team_name NVARCHAR(255),\\n matches_played INT,\\n wins INT,\\n draws INT,\\n losses INT,\\n goals_for INT,\\n goals_against INT\\n)\"],\"oraclesql\":[\"CREATE TABLE SeasonStats (\\n season_id NUMBER,\\n team_id NUMBER,\\n team_name VARCHAR2(255),\\n matches_played NUMBER,\\n wins NUMBER,\\n draws NUMBER,\\n losses NUMBER,\\n goals_for NUMBER,\\n goals_against NUMBER\\n)\"],\"database\":true,\"name\":\"process_team_standings\",\"postgresql\":[\"CREATE TABLE SeasonStats (\\n season_id INTEGER,\\n team_id INTEGER,\\n team_name VARCHAR(255),\\n matches_played INTEGER,\\n wins INTEGER,\\n draws INTEGER,\\n losses INTEGER,\\n goals_for INTEGER,\\n goals_against INTEGER\\n);\\n\"],\"pythondata\":[\"SeasonStats = pd.DataFrame(columns=['season_id', 'team_id', 'team_name', 'matches_played', 'wins', 'draws', 'losses', 'goals_for', 'goals_against'], dtype='int')\\n\"],\"database_schema\":{\"SeasonStats\":{\"season_id\":\"INT\",\"team_id\":\"INT\",\"team_name\":\"VARCHAR(255)\",\"matches_played\":\"INT\",\"wins\":\"INT\",\"draws\":\"INT\",\"losses\":\"INT\",\"goals_for\":\"INT\",\"goals_against\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE SeasonStats (\n season_id INT,\n team_id INT,\n team_name VARCHAR(255),\n matches_played INT,\n wins INT,\n draws INT,\n losses INT,\n goals_for INT,\n goals_against INT\n)",
|
||||
"Truncate table SeasonStats",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '1', 'Manchester City', '38', '29', '6', '3', '99', '26')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '2', 'Liverpool', '38', '28', '8', '2', '94', '26')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '3', 'Chelsea', '38', '21', '11', '6', '76', '33')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '4', 'Tottenham', '38', '22', '5', '11', '69', '40')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2021', '5', 'Arsenal', '38', '22', '3', '13', '61', '48')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '1', 'Manchester City', '38', '28', '5', '5', '94', '33')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '2', 'Arsenal', '38', '26', '6', '6', '88', '43')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '3', 'Manchester United', '38', '23', '6', '9', '58', '43')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '4', 'Newcastle', '38', '19', '14', '5', '68', '33')",
|
||||
"insert into SeasonStats (season_id, team_id, team_name, matches_played, wins, draws, losses, goals_for, goals_against) values ('2022', '5', 'Liverpool', '38', '19', '10', '9', '75', '47')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"SeasonStats\":[\"season_id\",\"team_id\",\"team_name\",\"matches_played\",\"wins\",\"draws\",\"losses\",\"goals_for\",\"goals_against\"]},\"rows\":{\"SeasonStats\":[[2021,1,\"Manchester City\",38,29,6,3,99,26],[2021,2,\"Liverpool\",38,28,8,2,94,26],[2021,3,\"Chelsea\",38,21,11,6,76,33],[2021,4,\"Tottenham\",38,22,5,11,69,40],[2021,5,\"Arsenal\",38,22,3,13,61,48],[2022,1,\"Manchester City\",38,28,5,5,94,33],[2022,2,\"Arsenal\",38,26,6,6,88,43],[2022,3,\"Manchester United\",38,23,6,9,58,43],[2022,4,\"Newcastle\",38,19,14,5,68,33],[2022,5,\"Liverpool\",38,19,10,9,75,47]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,61 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3554",
|
||||
"questionFrontendId": "3246",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2869459,
|
||||
"title": "Premier League Table Ranking",
|
||||
"titleSlug": "premier-league-table-ranking",
|
||||
"content": null,
|
||||
"translatedTitle": "英超积分榜排名",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"32\", \"totalSubmission\": \"35\", \"totalAcceptedRaw\": 32, \"totalSubmissionRaw\": 35, \"acRate\": \"91.4%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"TeamStats\":[\"team_id\",\"team_name\",\"matches_played\",\"wins\",\"draws\",\"losses\"]},\"rows\":{\"TeamStats\":[[1,\"Manchester City\",10,6,2,2],[2,\"Liverpool\",10,6,2,2],[3,\"Chelsea\",10,5,3,2],[4,\"Arsenal\",10,4,4,2],[5,\"Tottenham\",10,3,5,2]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists TeamStats( team_id int, team_name varchar(100),matches_played int, wins int,draws int,losses int)\"],\"mssql\":[\"Create table TeamStats( team_id int, team_name varchar(100),matches_played int, wins int,draws int,losses int)\"],\"oraclesql\":[\"Create table TeamStats( team_id NUMBER, team_name varchar2(100),matches_played NUMBER, wins NUMBER,draws NUMBER,losses NUMBER)\"],\"database\":true,\"name\":\"calculate_team_standings\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS TeamStats (\\n team_id INT,\\n team_name VARCHAR(100),\\n matches_played INT,\\n wins INT,\\n draws INT,\\n losses INT\\n);\\n\"],\"pythondata\":[\"TeamStats = pd.DataFrame(data, columns=[\\\"team_id\\\", \\\"team_name\\\", \\\"matches_played\\\", \\\"wins\\\", \\\"draws\\\", \\\"losses\\\"]).astype({\\\"team_id\\\": \\\"int\\\", \\\"team_name\\\": \\\"string\\\", \\\"matches_played\\\": \\\"int\\\", \\\"wins\\\": \\\"int\\\", \\\"draws\\\": \\\"int\\\", \\\"losses\\\": \\\"int\\\"})\\n\"],\"database_schema\":{\"TeamStats\":{\"team_id\":\"INT\",\"team_name\":\"VARCHAR(100)\",\"matches_played\":\"INT\",\"wins\":\"INT\",\"draws\":\"INT\",\"losses\":\"INT\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists TeamStats( team_id int, team_name varchar(100),matches_played int, wins int,draws int,losses int)",
|
||||
"Truncate table TeamStats",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('1', 'Manchester City', '10', '6', '2', '2')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('2', 'Liverpool', '10', '6', '2', '2')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('3', 'Chelsea', '10', '5', '3', '2')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('4', 'Arsenal', '10', '4', '4', '2')",
|
||||
"insert into TeamStats (team_id, team_name, matches_played, wins, draws, losses) values ('5', 'Tottenham', '10', '3', '5', '2')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"TeamStats\":[\"team_id\",\"team_name\",\"matches_played\",\"wins\",\"draws\",\"losses\"]},\"rows\":{\"TeamStats\":[[1,\"Manchester City\",10,6,2,2],[2,\"Liverpool\",10,6,2,2],[3,\"Chelsea\",10,5,3,2],[4,\"Arsenal\",10,4,4,2],[5,\"Tottenham\",10,3,5,2]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,64 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3481",
|
||||
"questionFrontendId": "3172",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2798976,
|
||||
"title": "Second Day Verification",
|
||||
"titleSlug": "second-day-verification",
|
||||
"content": null,
|
||||
"translatedTitle": "第二天验证",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Easy",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"28\", \"totalSubmission\": \"36\", \"totalAcceptedRaw\": 28, \"totalSubmissionRaw\": 36, \"acRate\": \"77.8%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"emails\":[\"email_id\",\"user_id\",\"signup_date\"],\"texts\":[\"text_id\",\"email_id\",\"signup_action\",\"action_date\"]},\"rows\":{\"emails\":[[125,7771,\"2022-06-14 09:30:00\"],[433,1052,\"2022-07-09 08:15:00\"],[234,7005,\"2022-08-20 10:00:00\"]],\"texts\":[[1,125,\"Verified\",\"2022-06-15 08:30:00\"],[2,433,\"Not Verified\",\"2022-07-10 10:45:00\"],[4,234,\"Verified\",\"2022-08-21 09:30:00\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"CREATE TABLE If not exists emails (\\n email_id INT,\\n user_id INT,\\n signup_date DATETIME\\n);\",\"CREATE TABLE If not exists texts (\\n text_id INT,\\n email_id INT,\\n signup_action ENUM('Verified', 'Not Verified'),\\n action_date DATETIME\\n);\"],\"mssql\":[\"CREATE TABLE emails (\\n email_id INT,\\n user_id INT,\\n signup_date DATETIME\\n);\",\"CREATE TABLE texts (\\n text_id INT,\\n email_id INT,\\n signup_action VARCHAR(12),\\n action_date DATETIME\\n);\"],\"oraclesql\":[\"CREATE TABLE emails (\\n email_id NUMBER,\\n user_id NUMBER,\\n signup_date DATE\\n)\\n\",\"CREATE TABLE texts (\\n text_id NUMBER,\\n email_id NUMBER,\\n signup_action VARCHAR(32),\\n action_date DATE\\n)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD HH24:MI:SS'\"],\"database\":true,\"name\":\"find_second_day_signups\",\"postgresql\":[\"CREATE TABLE emails (\\n email_id INTEGER,\\n user_id INTEGER,\\n signup_date DATE\\n);\\n\",\"CREATE TABLE texts (\\n text_id INTEGER,\\n email_id INTEGER,\\n signup_action VARCHAR(32),\\n action_date DATE\\n);\\n\",\"SELECT to_char(action_date, 'YYYY-MM-DD HH24:MI:SS') FROM texts;\\n\"],\"pythondata\":[\"emails = pd.DataFrame([], columns=['email_id', 'user_id', 'signup_date']).astype({\\n 'email_id': 'Int64', # Nullable integer type\\n 'user_id': 'Int64', # Nullable integer type\\n 'signup_date': 'datetime64[ns]' # DateTime type for signup date\\n})\",\"texts = pd.DataFrame([], columns=['text_id', 'email_id', 'signup_action', 'action_date']).astype({\\n 'text_id': 'Int64', # Nullable integer type for text_id\\n 'email_id': 'Int64', # Nullable integer type for email_id\\n 'signup_action': 'object', # Using 'object' to store string values for ENUM\\n 'action_date': 'datetime64[ns]' # DateTime type for action_date\\n})\"],\"database_schema\":{\"emails\":{\"email_id\":\"INT\",\"user_id\":\"INT\",\"signup_date\":\"DATETIME\"},\"texts\":{\"text_id\":\"INT\",\"email_id\":\"INT\",\"signup_action\":\"ENUM('Verified', 'Not Verified')\",\"action_date\":\"DATETIME\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"CREATE TABLE If not exists emails (\n email_id INT,\n user_id INT,\n signup_date DATETIME\n);",
|
||||
"CREATE TABLE If not exists texts (\n text_id INT,\n email_id INT,\n signup_action ENUM('Verified', 'Not Verified'),\n action_date DATETIME\n);",
|
||||
"Truncate table emails",
|
||||
"insert into emails (email_id, user_id, signup_date) values ('125', '7771', '2022-06-14 09:30:00')",
|
||||
"insert into emails (email_id, user_id, signup_date) values ('433', '1052', '2022-07-09 08:15:00')",
|
||||
"insert into emails (email_id, user_id, signup_date) values ('234', '7005', '2022-08-20 10:00:00')",
|
||||
"Truncate table texts",
|
||||
"insert into texts (text_id, email_id, signup_action, action_date) values ('1', '125', 'Verified', '2022-06-15 08:30:00')",
|
||||
"insert into texts (text_id, email_id, signup_action, action_date) values ('2', '433', 'Not Verified', '2022-07-10 10:45:00')",
|
||||
"insert into texts (text_id, email_id, signup_action, action_date) values ('4', '234', 'Verified', '2022-08-21 09:30:00')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"emails\":[\"email_id\",\"user_id\",\"signup_date\"],\"texts\":[\"text_id\",\"email_id\",\"signup_action\",\"action_date\"]},\"rows\":{\"emails\":[[125,7771,\"2022-06-14 09:30:00\"],[433,1052,\"2022-07-09 08:15:00\"],[234,7005,\"2022-08-20 10:00:00\"]],\"texts\":[[1,125,\"Verified\",\"2022-06-15 08:30:00\"],[2,433,\"Not Verified\",\"2022-07-10 10:45:00\"],[4,234,\"Verified\",\"2022-08-21 09:30:00\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
@@ -0,0 +1,66 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3660",
|
||||
"questionFrontendId": "3338",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2968919,
|
||||
"title": "Second Highest Salary II",
|
||||
"titleSlug": "second-highest-salary-ii",
|
||||
"content": null,
|
||||
"translatedTitle": "第二高的薪水 II",
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [
|
||||
{
|
||||
"name": "Database",
|
||||
"slug": "database",
|
||||
"translatedName": "数据库",
|
||||
"__typename": "TopicTagNode"
|
||||
}
|
||||
],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"60\", \"totalSubmission\": \"65\", \"totalAcceptedRaw\": 60, \"totalSubmissionRaw\": 65, \"acRate\": \"92.3%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"employees\":[\"emp_id\",\"salary\",\"dept\"]},\"rows\":{\"employees\":[[1,70000,\"Sales\"],[2,80000,\"Sales\"],[3,80000,\"Sales\"],[4,90000,\"Sales\"],[5,55000,\"IT\"],[6,65000,\"IT\"],[7,65000,\"IT\"],[8,50000,\"Marketing\"],[9,55000,\"Marketing\"],[10,55000,\"HR\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if not exists Employees (\\n emp_id int,\\n salary int,\\n dept varchar(50)\\n)\"],\"mssql\":[\"Create table Employees (\\n emp_id int,\\n salary int,\\n dept varchar(50)\\n)\"],\"oraclesql\":[\"Create table Employees (\\n emp_id number,\\n salary number,\\n dept varchar2(50)\\n)\"],\"database\":true,\"name\":\"find_second_highest_salary\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS Employees (\\n emp_id INT,\\n salary INT,\\n dept VARCHAR(50)\\n);\\n\"],\"pythondata\":[\"employees = pd.DataFrame({\\n 'emp_id': pd.Series(dtype='int'),\\n 'salary': pd.Series(dtype='int'),\\n 'dept': pd.Series(dtype='string')\\n})\"],\"database_schema\":{\"Employees\":{\"emp_id\":\"INT\",\"salary\":\"INT\",\"dept\":\"VARCHAR(50)\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if not exists Employees (\n emp_id int,\n salary int,\n dept varchar(50)\n)",
|
||||
"Truncate table employees",
|
||||
"insert into employees (emp_id, salary, dept) values ('1', '70000', 'Sales')",
|
||||
"insert into employees (emp_id, salary, dept) values ('2', '80000', 'Sales')",
|
||||
"insert into employees (emp_id, salary, dept) values ('3', '80000', 'Sales')",
|
||||
"insert into employees (emp_id, salary, dept) values ('4', '90000', 'Sales')",
|
||||
"insert into employees (emp_id, salary, dept) values ('5', '55000', 'IT')",
|
||||
"insert into employees (emp_id, salary, dept) values ('6', '65000', 'IT')",
|
||||
"insert into employees (emp_id, salary, dept) values ('7', '65000', 'IT')",
|
||||
"insert into employees (emp_id, salary, dept) values ('8', '50000', 'Marketing')",
|
||||
"insert into employees (emp_id, salary, dept) values ('9', '55000', 'Marketing')",
|
||||
"insert into employees (emp_id, salary, dept) values ('10', '55000', 'HR')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"employees\":[\"emp_id\",\"salary\",\"dept\"]},\"rows\":{\"employees\":[[1,70000,\"Sales\"],[2,80000,\"Sales\"],[3,80000,\"Sales\"],[4,90000,\"Sales\"],[5,55000,\"IT\"],[6,65000,\"IT\"],[7,65000,\"IT\"],[8,50000,\"Marketing\"],[9,55000,\"Marketing\"],[10,55000,\"HR\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
62
leetcode-cn/originData/[no content]snaps-analysis.json
Normal file
62
leetcode-cn/originData/[no content]snaps-analysis.json
Normal file
@@ -0,0 +1,62 @@
|
||||
{
|
||||
"data": {
|
||||
"question": {
|
||||
"questionId": "3340",
|
||||
"questionFrontendId": "100239",
|
||||
"categoryTitle": "Database",
|
||||
"boundTopicId": 2653966,
|
||||
"title": "Snaps Analysis",
|
||||
"titleSlug": "snaps-analysis",
|
||||
"content": null,
|
||||
"translatedTitle": null,
|
||||
"translatedContent": null,
|
||||
"isPaidOnly": true,
|
||||
"difficulty": "Medium",
|
||||
"likes": 0,
|
||||
"dislikes": 0,
|
||||
"isLiked": null,
|
||||
"similarQuestions": "[]",
|
||||
"contributors": [],
|
||||
"langToValidPlayground": null,
|
||||
"topicTags": [],
|
||||
"companyTagStats": null,
|
||||
"codeSnippets": null,
|
||||
"stats": "{\"totalAccepted\": \"20\", \"totalSubmission\": \"47\", \"totalAcceptedRaw\": 20, \"totalSubmissionRaw\": 47, \"acRate\": \"42.6%\"}",
|
||||
"hints": [],
|
||||
"solution": null,
|
||||
"status": null,
|
||||
"sampleTestCase": "{\"headers\":{\"Activities\":[\"activity_id\",\"user_id\",\"activity_type\",\"time_spent\"],\"Age\":[\"user_id\",\"age_bucket\"]},\"rows\":{\"Activities\":[[7274,123,\"open\",4.50],[2425,123,\"send\",3.50],[1413,456,\"send\",5.67],[2536,456,\"open\",3.00],[8564,456,\"send\",8.24],[5235,789,\"send\",6.24],[4251,123,\"open\",1.25],[1435,789,\"open\",5.25]],\"Age\":[[123,\"31-35\"],[789,\"21-25\"],[456,\"26-30\"]]}}",
|
||||
"metaData": "{\"mysql\":[\"Create table if Not Exists Activities(activity_id int, user_id int, activity_type ENUM('send', 'open'), time_spent decimal(5,2))\",\"Create table if not Exists Age( user_id int, age_bucket ENUM('21-25','26-30','31-35'))\"],\"mssql\":[\"Create table Activities (activity_id int, user_id int, activity_type varchar(30) NOT NULL CHECK (activity_type IN ('send','open')), time_spent decimal(5,2))\",\"Create table Age( user_id int, age_bucket varchar(30) NOT NULL CHECK ( age_bucket IN ('21-25','26-30','31-35')))\"],\"oraclesql\":[\"Create table Activities (activity_id int, user_id int, activity_type varchar(30) NOT NULL CHECK (activity_type IN ('send','open')), time_spent decimal(5,2))\",\"Create table Age( user_id int, age_bucket varchar(30) NOT NULL CHECK ( age_bucket IN ('21-25','26-30','31-35')))\"],\"database\":true,\"name\":\"snap_analysis\",\"pythondata\":[\"Activities = pd.DataFrame([], columns=['activity_id', 'user_id', 'activity_type', 'time_spent']).astype({'activity_id':'Int64', 'user_id':'Int64', 'activity_type':'object', 'time_spent':'Float64'})\\n\",\"Age = pd.DataFrame([], columns=['user_id', 'age_bucket']).astype({'user_id':'Int64', 'age_bucket':'object'})\\n\"],\"postgresql\":[\"CREATE TABLE Activities (\\n activity_id SERIAL PRIMARY KEY,\\n user_id INT,\\n activity_type VARCHAR(30) NOT NULL CHECK (activity_type IN ('send', 'open')),\\n time_spent DECIMAL(5,2)\\n);\",\"CREATE TABLE Age (\\n user_id INT,\\n age_bucket VARCHAR(30) NOT NULL CHECK (age_bucket IN ('21-25', '26-30', '31-35'))\\n);\"],\"database_schema\":{\"Activities\":{\"activity_id\":\"INT\",\"user_id\":\"INT\",\"activity_type\":\"ENUM('send', 'open')\",\"time_spent\":\"DECIMAL(5, 2)\"},\"Age\":{\"user_id\":\"INT\",\"age_bucket\":\"ENUM('21-25', '26-30', '31-35')\"}}}",
|
||||
"judgerAvailable": true,
|
||||
"judgeType": "large",
|
||||
"mysqlSchemas": [
|
||||
"Create table if Not Exists Activities(activity_id int, user_id int, activity_type ENUM('send', 'open'), time_spent decimal(5,2))",
|
||||
"Create table if not Exists Age( user_id int, age_bucket ENUM('21-25','26-30','31-35'))",
|
||||
"Truncate table Activities",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('7274', '123', 'open', '4.5')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('2425', '123', 'send', '3.5')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('1413', '456', 'send', '5.67')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('2536', '456', 'open', '3.0')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('8564', '456', 'send', '8.24')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('5235', '789', 'send', '6.24')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('4251', '123', 'open', '1.25')",
|
||||
"insert into Activities (activity_id, user_id, activity_type, time_spent) values ('1435', '789', 'open', '5.25')",
|
||||
"Truncate table Age",
|
||||
"insert into Age (user_id, age_bucket) values ('123', '31-35')",
|
||||
"insert into Age (user_id, age_bucket) values ('789', '21-25')",
|
||||
"insert into Age (user_id, age_bucket) values ('456', '26-30')"
|
||||
],
|
||||
"enableRunCode": true,
|
||||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||||
"book": null,
|
||||
"isSubscribed": false,
|
||||
"isDailyQuestion": false,
|
||||
"dailyRecordStatus": null,
|
||||
"editorType": "CKEDITOR",
|
||||
"ugcQuestionId": null,
|
||||
"style": "LEETCODE",
|
||||
"exampleTestcases": "{\"headers\":{\"Activities\":[\"activity_id\",\"user_id\",\"activity_type\",\"time_spent\"],\"Age\":[\"user_id\",\"age_bucket\"]},\"rows\":{\"Activities\":[[7274,123,\"open\",4.50],[2425,123,\"send\",3.50],[1413,456,\"send\",5.67],[2536,456,\"open\",3.00],[8564,456,\"send\",8.24],[5235,789,\"send\",6.24],[4251,123,\"open\",1.25],[1435,789,\"open\",5.25]],\"Age\":[[123,\"31-35\"],[789,\"21-25\"],[456,\"26-30\"]]}}",
|
||||
"__typename": "QuestionNode"
|
||||
}
|
||||
}
|
||||
}
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user