1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-03 14:32:54 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
This commit is contained in:
2023-11-13 00:01:27 +08:00
parent 4cea624fbf
commit 7d652958ba
65 changed files with 20177 additions and 13872 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,28 @@
<p>You are given two positive integers <code>n</code> and <code>limit</code>.</p>
<p>Return <em>the <strong>total number</strong> of ways to distribute </em><code>n</code> <em>candies among </em><code>3</code><em> children such that no child gets more than </em><code>limit</code><em> candies.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 5, limit = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> There are 3 ways to distribute 5 candies such that no child gets more than 2 candies: (1, 2, 2), (2, 1, 2) and (2, 2, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, limit = 3
<strong>Output:</strong> 10
<strong>Explanation:</strong> There are 10 ways to distribute 3 candies such that no child gets more than 3 candies: (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0).
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 50</code></li>
<li><code>1 &lt;= limit &lt;= 50</code></li>
</ul>

View File

@@ -0,0 +1,28 @@
<p>You are given two positive integers <code>n</code> and <code>limit</code>.</p>
<p>Return <em>the <strong>total number</strong> of ways to distribute </em><code>n</code> <em>candies among </em><code>3</code><em> children such that no child gets more than </em><code>limit</code><em> candies.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 5, limit = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> There are 3 ways to distribute 5 candies such that no child gets more than 2 candies: (1, 2, 2), (2, 1, 2) and (2, 2, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, limit = 3
<strong>Output:</strong> 10
<strong>Explanation:</strong> There are 10 ways to distribute 3 candies such that no child gets more than 3 candies: (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0).
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>6</sup></code></li>
<li><code>1 &lt;= limit &lt;= 10<sup>6</sup></code></li>
</ul>

View File

@@ -0,0 +1,41 @@
<p>There are <code>n</code> teams numbered from <code>0</code> to <code>n - 1</code> in a tournament.</p>
<p>Given a <strong>0-indexed</strong> 2D boolean matrix <code>grid</code> of size <code>n * n</code>. For all <code>i, j</code> that <code>0 &lt;= i, j &lt;= n - 1</code> and <code>i != j</code> team <code>i</code> is <strong>stronger</strong> than team <code>j</code> if <code>grid[i][j] == 1</code>, otherwise, team <code>j</code> is <strong>stronger</strong> than team <code>i</code>.</p>
<p>Team <code>a</code> will be the <strong>champion</strong> of the tournament if there is no team <code>b</code> that is stronger than team <code>a</code>.</p>
<p>Return <em>the team that will be the champion of the tournament.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> grid = [[0,1],[0,0]]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are two teams in this tournament.
grid[0][1] == 1 means that team 0 is stronger than team 1. So team 0 will be the champion.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> grid = [[0,0,1],[1,0,1],[0,0,0]]
<strong>Output:</strong> 1
<strong>Explanation:</strong> There are three teams in this tournament.
grid[1][0] == 1 means that team 1 is stronger than team 0.
grid[1][2] == 1 means that team 1 is stronger than team 2.
So team 1 will be the champion.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == grid.length</code></li>
<li><code>n == grid[i].length</code></li>
<li><code>2 &lt;= n &lt;= 100</code></li>
<li><code>grid[i][j]</code> is either <code>0</code> or <code>1</code>.</li>
<li>For all <code>i grid[i][i]</code> is <code>0.</code></li>
<li>For all <code>i, j</code> that <code>i != j</code>, <code>grid[i][j] != grid[j][i]</code>.</li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code> and team <code>b</code> is stronger than team <code>c</code>, then team <code>a</code> is stronger than team <code>c</code>.</li>
</ul>

View File

@@ -0,0 +1,51 @@
<p>There are <code>n</code> teams numbered from <code>0</code> to <code>n - 1</code> in a tournament; each team is also a node in a <strong>DAG</strong>.</p>
<p>You are given the integer <code>n</code> and a <strong>0-indexed</strong> 2D integer array <code>edges</code> of length <code><font face="monospace">m</font></code> representing the <strong>DAG</strong>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>]</code> indicates that there is a directed edge from team <code>u<sub>i</sub></code> to team <code>v<sub>i</sub></code> in the graph.</p>
<p>A directed edge from <code>a</code> to <code>b</code> in the graph means that team <code>a</code> is <strong>stronger</strong> than team <code>b</code> and team <code>b</code> is <strong>weaker</strong> than team <code>a</code>.</p>
<p>Team <code>a</code> will be the <strong>champion</strong> of the tournament if there is no team <code>b</code> that is <strong>stronger</strong> than team <code>a</code>.</p>
<p>Return <em>the team that will be the <strong>champion</strong> of the tournament if there is a <strong>unique</strong> champion, otherwise, return </em><code>-1</code><em>.</em></p>
<p><strong>Notes</strong></p>
<ul>
<li>A <strong>cycle</strong> is a series of nodes <code>a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>, a<sub>n+1</sub></code> such that node <code>a<sub>1</sub></code> is the same node as node <code>a<sub>n+1</sub></code>, the nodes <code>a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub></code> are distinct, and there is a directed edge from the node <code>a<sub>i</sub></code> to node <code>a<sub>i+1</sub></code> for every <code>i</code> in the range <code>[1, n]</code>.</li>
<li>A <strong>DAG</strong> is a directed graph that does not have any <strong>cycle</strong>.</li>
</ul>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<p><img height="300" src="https://assets.leetcode.com/uploads/2023/10/19/graph-3.png" width="300" /></p>
<pre>
<strong>Input:</strong> n = 3, edges = [[0,1],[1,2]]
<strong>Output:</strong> 0
<strong>Explanation: </strong>Team 1 is weaker than team 0. Team 2 is weaker than team 1. So the champion is team 0.
</pre>
<p><strong class="example">Example 2:</strong></p>
<p><img height="300" src="https://assets.leetcode.com/uploads/2023/10/19/graph-4.png" width="300" /></p>
<pre>
<strong>Input:</strong> n = 4, edges = [[0,2],[1,3],[1,2]]
<strong>Output:</strong> -1
<strong>Explanation:</strong> Team 2 is weaker than team 0 and team 1. Team 3 is weaker than team 1. But team 1 and team 0 are not weaker than any other teams. So the answer is -1.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 100</code></li>
<li><code>m == edges.length</code></li>
<li><code>0 &lt;= m &lt;= n * (n - 1) / 2</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>0 &lt;= edge[i][j] &lt;= n - 1</code></li>
<li><code>edges[i][0] != edges[i][1]</code></li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code>, team <code>b</code> is not stronger than team <code>a</code>.</li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code> and team <code>b</code> is stronger than team <code>c</code>, then team <code>a</code> is stronger than team <code>c</code>.</li>
</ul>

View File

@@ -0,0 +1,52 @@
<p>You are given a 2D <strong>0-indexed</strong> array of strings, <code>access_times</code>, with size <code>n</code>. For each <code>i</code> where <code>0 &lt;= i &lt;= n - 1</code>, <code>access_times[i][0]</code> represents the name of an employee, and <code>access_times[i][1]</code> represents the access time of that employee. All entries in <code>access_times</code> are within the same day.</p>
<p>The access time is represented as <strong>four digits</strong> using a <strong>24-hour</strong> time format, for example, <code>&quot;0800&quot;</code> or <code>&quot;2250&quot;</code>.</p>
<p>An employee is said to be <strong>high-access</strong> if he has accessed the system <strong>three or more</strong> times within a <strong>one-hour period</strong>.</p>
<p>Times with exactly one hour of difference are <strong>not</strong> considered part of the same one-hour period. For example, <code>&quot;0815&quot;</code> and <code>&quot;0915&quot;</code> are not part of the same one-hour period.</p>
<p>Access times at the start and end of the day are <strong>not</strong> counted within the same one-hour period. For example, <code>&quot;0005&quot;</code> and <code>&quot;2350&quot;</code> are not part of the same one-hour period.</p>
<p>Return <em>a list that contains the names of <strong>high-access</strong> employees with any order you want.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;a&quot;,&quot;0549&quot;],[&quot;b&quot;,&quot;0457&quot;],[&quot;a&quot;,&quot;0532&quot;],[&quot;a&quot;,&quot;0621&quot;],[&quot;b&quot;,&quot;0540&quot;]]
<strong>Output:</strong> [&quot;a&quot;]
<strong>Explanation:</strong> &quot;a&quot; has three access times in the one-hour period of [05:32, 06:31] which are 05:32, 05:49, and 06:21.
But &quot;b&quot; does not have more than two access times at all.
So the answer is [&quot;a&quot;].</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;d&quot;,&quot;0002&quot;],[&quot;c&quot;,&quot;0808&quot;],[&quot;c&quot;,&quot;0829&quot;],[&quot;e&quot;,&quot;0215&quot;],[&quot;d&quot;,&quot;1508&quot;],[&quot;d&quot;,&quot;1444&quot;],[&quot;d&quot;,&quot;1410&quot;],[&quot;c&quot;,&quot;0809&quot;]]
<strong>Output:</strong> [&quot;c&quot;,&quot;d&quot;]
<strong>Explanation:</strong> &quot;c&quot; has three access times in the one-hour period of [08:08, 09:07] which are 08:08, 08:09, and 08:29.
&quot;d&quot; has also three access times in the one-hour period of [14:10, 15:09] which are 14:10, 14:44, and 15:08.
However, &quot;e&quot; has just one access time, so it can not be in the answer and the final answer is [&quot;c&quot;,&quot;d&quot;].</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;cd&quot;,&quot;1025&quot;],[&quot;ab&quot;,&quot;1025&quot;],[&quot;cd&quot;,&quot;1046&quot;],[&quot;cd&quot;,&quot;1055&quot;],[&quot;ab&quot;,&quot;1124&quot;],[&quot;ab&quot;,&quot;1120&quot;]]
<strong>Output:</strong> [&quot;ab&quot;,&quot;cd&quot;]
<strong>Explanation:</strong> &quot;ab&quot; has three access times in the one-hour period of [10:25, 11:24] which are 10:25, 11:20, and 11:24.
&quot;cd&quot; has also three access times in the one-hour period of [10:25, 11:24] which are 10:25, 10:46, and 10:55.
So the answer is [&quot;ab&quot;,&quot;cd&quot;].</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= access_times.length &lt;= 100</code></li>
<li><code>access_times[i].length == 2</code></li>
<li><code>1 &lt;= access_times[i][0].length &lt;= 10</code></li>
<li><code>access_times[i][0]</code> consists only of English small letters.</li>
<li><code>access_times[i][1].length == 4</code></li>
<li><code>access_times[i][1]</code> is in 24-hour time format.</li>
<li><code>access_times[i][1]</code> consists only of <code>&#39;0&#39;</code> to <code>&#39;9&#39;</code>.</li>
</ul>

View File

@@ -0,0 +1,54 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>.</p>
<p>A <strong>subsequence</strong> of <code>nums</code> having length <code>k</code> and consisting of <strong>indices</strong> <code>i<sub>0</sub>&nbsp;&lt;&nbsp;i<sub>1</sub> &lt;&nbsp;... &lt; i<sub>k-1</sub></code> is <strong>balanced</strong> if the following holds:</p>
<ul>
<li><code>nums[i<sub>j</sub>] - nums[i<sub>j-1</sub>] &gt;= i<sub>j</sub> - i<sub>j-1</sub></code>, for every <code>j</code> in the range <code>[1, k - 1]</code>.</li>
</ul>
<p>A <strong>subsequence</strong> of <code>nums</code> having length <code>1</code> is considered balanced.</p>
<p>Return <em>an integer denoting the <strong>maximum</strong> possible <strong>sum of elements</strong> in a <strong>balanced</strong> subsequence of </em><code>nums</code>.</p>
<p>A <strong>subsequence</strong> of an array is a new <strong>non-empty</strong> array that is formed from the original array by deleting some (<strong>possibly none</strong>) of the elements without disturbing the relative positions of the remaining elements.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,3,5,6]
<strong>Output:</strong> 14
<strong>Explanation:</strong> In this example, the subsequence [3,5,6] consisting of indices 0, 2, and 3 can be selected.
nums[2] - nums[0] &gt;= 2 - 0.
nums[3] - nums[2] &gt;= 3 - 2.
Hence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
The subsequence consisting of indices 1, 2, and 3 is also valid.
It can be shown that it is not possible to get a balanced subsequence with a sum greater than 14.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,-1,-3,8]
<strong>Output:</strong> 13
<strong>Explanation:</strong> In this example, the subsequence [5,8] consisting of indices 0 and 3 can be selected.
nums[3] - nums[0] &gt;= 3 - 0.
Hence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
It can be shown that it is not possible to get a balanced subsequence with a sum greater than 13.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1]
<strong>Output:</strong> -1
<strong>Explanation:</strong> In this example, the subsequence [-1] can be selected.
It is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> &lt;= nums[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@@ -0,0 +1,52 @@
<p>There is an undirected tree with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>, and rooted at node <code>0</code>. You are given&nbsp;a 2D integer array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree.</p>
<p>You are also given a <strong>0-indexed</strong> integer array <code>values</code> of length <code>n</code>, where <code>values[i]</code> is the <strong>value</strong> associated with the <code>i<sup>th</sup></code> node.</p>
<p>You start with a score of <code>0</code>. In one operation, you can:</p>
<ul>
<li>Pick any node <code>i</code>.</li>
<li>Add <code>values[i]</code> to your score.</li>
<li>Set <code>values[i]</code> to <code>0</code>.</li>
</ul>
<p>A tree is <strong>healthy</strong> if the sum of values on the path from the root to any leaf node is different than zero.</p>
<p>Return <em>the <strong>maximum score</strong> you can obtain after performing these operations on the tree any number of times so that it remains <strong>healthy</strong>.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2023/10/11/graph-13-1.png" style="width: 515px; height: 443px;" />
<pre>
<strong>Input:</strong> edges = [[0,1],[0,2],[0,3],[2,4],[4,5]], values = [5,2,5,2,1,1]
<strong>Output:</strong> 11
<strong>Explanation:</strong> We can choose nodes 1, 2, 3, 4, and 5. The value of the root is non-zero. Hence, the sum of values on the path from the root to any leaf is different than zero. Therefore, the tree is healthy and the score is values[1] + values[2] + values[3] + values[4] + values[5] = 11.
It can be shown that 11 is the maximum score obtainable after any number of operations on the tree.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2023/10/11/graph-14-2.png" style="width: 522px; height: 245px;" />
<pre>
<strong>Input:</strong> edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]], values = [20,10,9,7,4,3,5]
<strong>Output:</strong> 40
<strong>Explanation:</strong> We can choose nodes 0, 2, 3, and 4.
- The sum of values on the path from 0 to 4 is equal to 10.
- The sum of values on the path from 0 to 3 is equal to 10.
- The sum of values on the path from 0 to 5 is equal to 3.
- The sum of values on the path from 0 to 6 is equal to 5.
Therefore, the tree is healthy and the score is values[0] + values[2] + values[3] + values[4] = 40.
It can be shown that 40 is the maximum score obtainable after any number of operations on the tree.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 &lt;= n &lt;= 2 * 10<sup>4</sup></code></li>
<li><code>edges.length == n - 1</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>0 &lt;= a<sub>i</sub>, b<sub>i</sub> &lt; n</code></li>
<li><code>values.length == n</code></li>
<li><code>1 &lt;= values[i] &lt;= 10<sup>9</sup></code></li>
<li>The input is generated such that <code>edges</code> represents a valid tree.</li>
</ul>

View File

@@ -0,0 +1,60 @@
<p>You are given a <strong>0-indexed</strong> <code>m * n</code> integer matrix <code>values</code>, representing the values of <code>m * n</code> different items in <code>m</code> different shops. Each shop has <code>n</code> items where the <code>j<sup>th</sup></code> item in the <code>i<sup>th</sup></code> shop has a value of <code>values[i][j]</code>. Additionally, the items in the <code>i<sup>th</sup></code> shop are sorted in non-increasing order of value. That is, <code>values[i][j] &gt;= values[i][j + 1]</code> for all <code>0 &lt;= j &lt; n - 1</code>.</p>
<p>On each day, you would like to buy a single item from one of the shops. Specifically, On the <code>d<sup>th</sup></code> day you can:</p>
<ul>
<li>Pick any shop <code>i</code>.</li>
<li>Buy the rightmost available item <code>j</code> for the price of <code>values[i][j] * d</code>. That is, find the greatest index <code>j</code> such that item <code>j</code> was never bought before, and buy it for the price of <code>values[i][j] * d</code>.</li>
</ul>
<p><strong>Note</strong> that all items are pairwise different. For example, if you have bought item <code>0</code> from shop <code>1</code>, you can still buy item <code>0</code> from any other shop.</p>
<p>Return <em>the <strong>maximum amount of money that can be spent</strong> on buying all </em> <code>m * n</code> <em>products</em>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> values = [[8,5,2],[6,4,1],[9,7,3]]
<strong>Output:</strong> 285
<strong>Explanation:</strong> On the first day, we buy product 2 from shop 1 for a price of values[1][2] * 1 = 1.
On the second day, we buy product 2 from shop 0 for a price of values[0][2] * 2 = 4.
On the third day, we buy product 2 from shop 2 for a price of values[2][2] * 3 = 9.
On the fourth day, we buy product 1 from shop 1 for a price of values[1][1] * 4 = 16.
On the fifth day, we buy product 1 from shop 0 for a price of values[0][1] * 5 = 25.
On the sixth day, we buy product 0 from shop 1 for a price of values[1][0] * 6 = 36.
On the seventh day, we buy product 1 from shop 2 for a price of values[2][1] * 7 = 49.
On the eighth day, we buy product 0 from shop 0 for a price of values[0][0] * 8 = 64.
On the ninth day, we buy product 0 from shop 2 for a price of values[2][0] * 9 = 81.
Hence, our total spending is equal to 285.
It can be shown that 285 is the maximum amount of money that can be spent buying all m * n products.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> values = [[10,8,6,4,2],[9,7,5,3,2]]
<strong>Output:</strong> 386
<strong>Explanation:</strong> On the first day, we buy product 4 from shop 0 for a price of values[0][4] * 1 = 2.
On the second day, we buy product 4 from shop 1 for a price of values[1][4] * 2 = 4.
On the third day, we buy product 3 from shop 1 for a price of values[1][3] * 3 = 9.
On the fourth day, we buy product 3 from shop 0 for a price of values[0][3] * 4 = 16.
On the fifth day, we buy product 2 from shop 1 for a price of values[1][2] * 5 = 25.
On the sixth day, we buy product 2 from shop 0 for a price of values[0][2] * 6 = 36.
On the seventh day, we buy product 1 from shop 1 for a price of values[1][1] * 7 = 49.
On the eighth day, we buy product 1 from shop 0 for a price of values[0][1] * 8 = 64
On the ninth day, we buy product 0 from shop 1 for a price of values[1][0] * 9 = 81.
On the tenth day, we buy product 0 from shop 0 for a price of values[0][0] * 10 = 100.
Hence, our total spending is equal to 386.
It can be shown that 386 is the maximum amount of money that can be spent buying all m * n products.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= m == values.length &lt;= 10</code></li>
<li><code>1 &lt;= n == values[i].length &lt;= 10<sup>4</sup></code></li>
<li><code>1 &lt;= values[i][j] &lt;= 10<sup>6</sup></code></li>
<li><code>values[i]</code> are sorted in non-increasing order.</li>
</ul>

View File

@@ -0,0 +1,47 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>. A pair of integers <code>x</code> and <code>y</code> is called a <strong>strong</strong> pair if it satisfies the condition:</p>
<ul>
<li><code>|x - y| &lt;= min(x, y)</code></li>
</ul>
<p>You need to select two integers from <code>nums</code> such that they form a strong pair and their bitwise <code>XOR</code> is the <strong>maximum</strong> among all strong pairs in the array.</p>
<p>Return <em>the <strong>maximum</strong> </em><code>XOR</code><em> value out of all possible strong pairs in the array</em> <code>nums</code>.</p>
<p><strong>Note</strong> that you can pick the same integer twice to form a pair.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 11 strong pairs in the array <code>nums</code>: (1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) and (5, 5).
The maximum XOR possible from these pairs is 3 XOR 4 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [10,100]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are 2 strong pairs in the array <code>nums</code>: (10, 10) and (100, 100).
The maximum XOR possible from these pairs is 10 XOR 10 = 0 since the pair (100, 100) also gives 100 XOR 100 = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,6,25,30]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 6 strong pairs in the array <code>nums</code>: (5, 5), (5, 6), (6, 6), (25, 25), (25, 30) and (30, 30).
The maximum XOR possible from these pairs is 25 XOR 30 = 7 since the only other non-zero XOR value is 5 XOR 6 = 3.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 50</code></li>
<li><code>1 &lt;= nums[i] &lt;= 100</code></li>
</ul>

View File

@@ -0,0 +1,47 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>. A pair of integers <code>x</code> and <code>y</code> is called a <strong>strong</strong> pair if it satisfies the condition:</p>
<ul>
<li><code>|x - y| &lt;= min(x, y)</code></li>
</ul>
<p>You need to select two integers from <code>nums</code> such that they form a strong pair and their bitwise <code>XOR</code> is the <strong>maximum</strong> among all strong pairs in the array.</p>
<p>Return <em>the <strong>maximum</strong> </em><code>XOR</code><em> value out of all possible strong pairs in the array</em> <code>nums</code>.</p>
<p><strong>Note</strong> that you can pick the same integer twice to form a pair.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 11 strong pairs in the array <code>nums</code>: (1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) and (5, 5).
The maximum XOR possible from these pairs is 3 XOR 4 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [10,100]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are 2 strong pairs in the array nums: (10, 10) and (100, 100).
The maximum XOR possible from these pairs is 10 XOR 10 = 0 since the pair (100, 100) also gives 100 XOR 100 = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [500,520,2500,3000]
<strong>Output:</strong> 1020
<strong>Explanation:</strong> There are 6 strong pairs in the array nums: (500, 500), (500, 520), (520, 520), (2500, 2500), (2500, 3000) and (3000, 3000).
The maximum XOR possible from these pairs is 500 XOR 520 = 1020 since the only other non-zero XOR value is 2500 XOR 3000 = 636.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 5 * 10<sup>4</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 2<sup>20</sup> - 1</code></li>
</ul>

View File

@@ -0,0 +1,60 @@
<p>You are given two <strong>0-indexed</strong> integer arrays, <code>nums1</code> and <code>nums2</code>, both having length <code>n</code>.</p>
<p>You are allowed to perform a series of <strong>operations</strong> (<strong>possibly none</strong>).</p>
<p>In an operation, you select an index <code>i</code> in the range <code>[0, n - 1]</code> and <strong>swap</strong> the values of <code>nums1[i]</code> and <code>nums2[i]</code>.</p>
<p>Your task is to find the <strong>minimum</strong> number of operations required to satisfy the following conditions:</p>
<ul>
<li><code>nums1[n - 1]</code> is equal to the <strong>maximum value</strong> among all elements of <code>nums1</code>, i.e., <code>nums1[n - 1] = max(nums1[0], nums1[1], ..., nums1[n - 1])</code>.</li>
<li><code>nums2[n - 1]</code> is equal to the <strong>maximum</strong> <strong>value</strong> among all elements of <code>nums2</code>, i.e., <code>nums2[n - 1] = max(nums2[0], nums2[1], ..., nums2[n - 1])</code>.</li>
</ul>
<p>Return <em>an integer denoting the <strong>minimum</strong> number of operations needed to meet <strong>both</strong> conditions</em>, <em>or </em><code>-1</code><em> if it is <strong>impossible</strong> to satisfy both conditions.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [1,2,7], nums2 = [4,5,3]
<strong>Output:</strong> 1
<strong>Explanation:</strong> In this example, an operation can be performed using index i = 2.
When nums1[2] and nums2[2] are swapped, nums1 becomes [1,2,3] and nums2 becomes [4,5,7].
Both conditions are now satisfied.
It can be shown that the minimum number of operations needed to be performed is 1.
So, the answer is 1.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [2,3,4,5,9], nums2 = [8,8,4,4,4]
<strong>Output:</strong> 2
<strong>Explanation:</strong> In this example, the following operations can be performed:
First operation using index i = 4.
When nums1[4] and nums2[4] are swapped, nums1 becomes [2,3,4,5,4], and nums2 becomes [8,8,4,4,9].
Another operation using index i = 3.
When nums1[3] and nums2[3] are swapped, nums1 becomes [2,3,4,4,4], and nums2 becomes [8,8,4,5,9].
Both conditions are now satisfied.
It can be shown that the minimum number of operations needed to be performed is 2.
So, the answer is 2.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [1,5,4], nums2 = [2,5,3]
<strong>Output:</strong> -1
<strong>Explanation:</strong> In this example, it is not possible to satisfy both conditions.
So, the answer is -1.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n == nums1.length == nums2.length &lt;= 1000</code></li>
<li><code>1 &lt;= nums1[i] &lt;= 10<sup>9</sup></code></li>
<li><code>1 &lt;= nums2[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@@ -0,0 +1,42 @@
<p>You are given an integer <code>n</code>.</p>
<p>A string <code>s</code> is called <strong>good </strong>if it contains only lowercase English characters <strong>and</strong> it is possible to rearrange the characters of <code>s</code> such that the new string contains <code>&quot;leet&quot;</code> as a <strong>substring</strong>.</p>
<p>For example:</p>
<ul>
<li>The string <code>&quot;lteer&quot;</code> is good because we can rearrange it to form <code>&quot;leetr&quot;</code> .</li>
<li><code>&quot;letl&quot;</code> is not good because we cannot rearrange it to contain <code>&quot;leet&quot;</code> as a substring.</li>
</ul>
<p>Return <em>the <strong>total</strong> number of good strings of length </em><code>n</code>.</p>
<p>Since the answer may be large, return it <strong>modulo </strong><code>10<sup>9</sup> + 7</code>.</p>
<p>A <strong>substring</strong> is a contiguous sequence of characters within a string.</p>
<div class="notranslate" style="all: initial;">&nbsp;</div>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 4
<strong>Output:</strong> 12
<strong>Explanation:</strong> The 12 strings which can be rearranged to have &quot;leet&quot; as a substring are: &quot;eelt&quot;, &quot;eetl&quot;, &quot;elet&quot;, &quot;elte&quot;, &quot;etel&quot;, &quot;etle&quot;, &quot;leet&quot;, &quot;lete&quot;, &quot;ltee&quot;, &quot;teel&quot;, &quot;tele&quot;, and &quot;tlee&quot;.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 83943898
<strong>Explanation:</strong> The number of strings with length 10 which can be rearranged to have &quot;leet&quot; as a substring is 526083947580. Hence the answer is 526083947580 % (10<sup>9</sup> + 7) = 83943898.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>5</sup></code></li>
</ul>