1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-10 10:38:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
This commit is contained in:
程序员小墨 2023-11-13 00:01:27 +08:00
parent 4cea624fbf
commit 7d652958ba
65 changed files with 20177 additions and 13872 deletions

View File

@ -1,6 +1,6 @@
# 力扣题库(完整版)
> 最后更新日期: **2023.11.03**
> 最后更新日期: **2023.11.13**
>
> 使用脚本前请务必仔细完整阅读本 `README.md` 文件

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,58 @@
<p>有一棵 <code>n</code>&nbsp;个节点的无向树,节点编号为 <code>0</code>&nbsp;<code>n - 1</code>&nbsp;,根节点编号为 <code>0</code>&nbsp;。给你一个长度为 <code>n - 1</code>&nbsp;的二维整数数组&nbsp;<code>edges</code>&nbsp;表示这棵树,其中&nbsp;<code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code>&nbsp;表示树中节点&nbsp;<code>a<sub>i</sub></code>&nbsp;&nbsp;<code>b<sub>i</sub></code>&nbsp;有一条边。</p>
<p>同时给你一个长度为 <code>n</code>&nbsp;下标从 <strong>0</strong>&nbsp;开始的整数数组&nbsp;<code>values</code>&nbsp;,其中&nbsp;<code>values[i]</code>&nbsp;表示第 <code>i</code>&nbsp;个节点的值。</p>
<p>一开始你的分数为 <code>0</code>&nbsp;,每次操作中,你将执行:</p>
<ul>
<li>选择节点&nbsp;<code>i</code>&nbsp;</li>
<li>&nbsp;<code>values[i]</code>&nbsp;加入你的分数。</li>
<li>&nbsp;<code>values[i]</code>&nbsp;变为&nbsp;<code>0</code>&nbsp;</li>
</ul>
<p>如果从根节点出发,到任意叶子节点经过的路径上的节点值之和都不等于 0 ,那么我们称这棵树是 <strong>健康的</strong>&nbsp;</p>
<p>你可以对这棵树执行任意次操作,但要求执行完所有操作以后树是&nbsp;<strong>健康的</strong>&nbsp;,请你返回你可以获得的 <strong>最大分数</strong>&nbsp;</p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<p><img alt="" src="https://assets.leetcode.com/uploads/2023/10/11/graph-13-1.png" style="width: 515px; height: 443px;" /></p>
<pre>
<b>输入:</b>edges = [[0,1],[0,2],[0,3],[2,4],[4,5]], values = [5,2,5,2,1,1]
<b>输出:</b>11
<b>解释:</b>我们可以选择节点 1 2 3 4 和 5 。根节点的值是非 0 的。所以从根出发到任意叶子节点路径上节点值之和都不为 0 。所以树是健康的。你的得分之和为 values[1] + values[2] + values[3] + values[4] + values[5] = 11 。
11 是你对树执行任意次操作以后可以获得的最大得分之和。
</pre>
<p><strong class="example">示例 2</strong></p>
<p><img alt="" src="https://assets.leetcode.com/uploads/2023/10/11/graph-14-2.png" style="width: 522px; height: 245px;" /></p>
<pre>
<b>输入:</b>edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]], values = [20,10,9,7,4,3,5]
<b>输出:</b>40
<b>解释:</b>我们选择节点 0 2 3 和 4 。
- 从 0 到 4 的节点值之和为 10 。
- 从 0 到 3 的节点值之和为 10 。
- 从 0 到 5 的节点值之和为 3 。
- 从 0 到 6 的节点值之和为 5 。
所以树是健康的。你的得分之和为 values[0] + values[2] + values[3] + values[4] = 40 。
40 是你对树执行任意次操作以后可以获得的最大得分之和。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>2 &lt;= n &lt;= 2 * 10<sup>4</sup></code></li>
<li><code>edges.length == n - 1</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>0 &lt;= a<sub>i</sub>, b<sub>i</sub> &lt; n</code></li>
<li><code>values.length == n</code></li>
<li><code>1 &lt;= values[i] &lt;= 10<sup>9</sup></code></li>
<li>输入保证&nbsp;<code>edges</code>&nbsp;构成一棵合法的树。</li>
</ul>

View File

@ -0,0 +1,56 @@
<p>给你一个下标从 <strong>0</strong>&nbsp;开始的整数数组&nbsp;<code>nums</code>&nbsp;</p>
<p><code>nums</code>&nbsp;一个长度为 <code>k</code>&nbsp;<strong>子序列</strong>&nbsp;指的是选出 <code>k</code>&nbsp;<strong>下标</strong>&nbsp;<code>i<sub>0</sub>&nbsp;&lt;&nbsp;i<sub>1</sub> &lt;&nbsp;... &lt; i<sub>k-1</sub></code>&nbsp;,如果这个子序列满足以下条件,我们说它是 <strong>平衡的</strong>&nbsp;</p>
<ul>
<li>对于范围&nbsp;<code>[1, k - 1]</code>&nbsp;内的所有&nbsp;<code>j</code>&nbsp;<code>nums[i<sub>j</sub>] - nums[i<sub>j-1</sub>] &gt;= i<sub>j</sub> - i<sub>j-1</sub></code>&nbsp;都成立。</li>
</ul>
<p><code>nums</code>&nbsp;长度为 <code>1</code>&nbsp;<strong>子序列</strong>&nbsp;是平衡的。</p>
<p>请你返回一个整数,表示 <code>nums</code>&nbsp;<strong>平衡</strong>&nbsp;子序列里面的 <strong>最大元素和</strong>&nbsp;</p>
<p>一个数组的 <strong>子序列</strong>&nbsp;指的是从原数组中删除一些元素(<strong>也可能一个元素也不删除</strong>)后,剩余元素保持相对顺序得到的 <strong>非空</strong>&nbsp;新数组。</p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<pre>
<b>输入:</b>nums = [3,3,5,6]
<b>输出:</b>14
<b>解释:</b>这个例子中,选择子序列 [3,5,6] ,下标为 0 2 和 3 的元素被选中。
nums[2] - nums[0] &gt;= 2 - 0 。
nums[3] - nums[2] &gt;= 3 - 2 。
所以,这是一个平衡子序列,且它的和是所有平衡子序列里最大的。
包含下标 1 2 和 3 的子序列也是一个平衡的子序列。
最大平衡子序列和为 14 。</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<b>输入:</b>nums = [5,-1,-3,8]
<b>输出:</b>13
<b>解释:</b>这个例子中,选择子序列 [5,8] ,下标为 0 和 3 的元素被选中。
nums[3] - nums[0] &gt;= 3 - 0 。
所以,这是一个平衡子序列,且它的和是所有平衡子序列里最大的。
最大平衡子序列和为 13 。
</pre>
<p><strong class="example">示例 3</strong></p>
<pre>
<b>输入:</b>nums = [-2,-1]
<b>输出:</b>-1
<b>解释:</b>这个例子中,选择子序列 [-1] 。
这是一个平衡子序列,而且它的和是 nums 所有平衡子序列里最大的。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> &lt;= nums[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,49 @@
<p>给你一个下标从 <strong>0</strong> 开始的整数数组 <code>nums</code> 。如果一对整数 <code>x</code><code>y</code> 满足以下条件,则称其为 <strong>强数对</strong> </p>
<ul>
<li><code>|x - y| &lt;= min(x, y)</code></li>
</ul>
<p>你需要从 <code>nums</code> 中选出两个整数,且满足:这两个整数可以形成一个强数对,并且它们的按位异或(<code>XOR</code>)值是在该数组所有强数对中的<strong> 最大值 </strong></p>
<p>返回数组 <code>nums</code> 所有可能的强数对中的<strong> 最大 </strong>异或值。</p>
<p><strong>注意</strong>,你可以选择同一个整数两次来形成一个强数对。</p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<pre>
<strong>输入:</strong>nums = [1,2,3,4,5]
<strong>输出:</strong>7
<strong>解释:</strong>数组<code> nums </code>中有 11 个强数对:(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) 和 (5, 5) 。
这些强数对中的最大异或值是 3 XOR 4 = 7 。
</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<strong>输入:</strong>nums = [10,100]
<strong>输出:</strong>0
<strong>解释:</strong>数组<code> nums </code>中有 2 个强数对:(10, 10) 和 (100, 100) 。
这些强数对中的最大异或值是 10 XOR 10 = 0 ,数对 (100, 100) 的异或值也是 100 XOR 100 = 0 。
</pre>
<p><strong class="example">示例 3</strong></p>
<pre>
<strong>输入:</strong>nums = [5,6,25,30]
<strong>输出:</strong>7
<strong>解释:</strong>数组<code> nums </code>中有 6 个强数对:(5, 5), (5, 6), (6, 6), (25, 25), (25, 30) 和 (30, 30) 。
这些强数对中的最大异或值是 25 XOR 30 = 7 ;另一个异或值非零的数对是 (5, 6) ,其异或值是 5 XOR 6 = 3 。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 50</code></li>
<li><code>1 &lt;= nums[i] &lt;= 100</code></li>
</ul>

View File

@ -0,0 +1,49 @@
<p>给你一个下标从 <strong>0</strong> 开始的整数数组 <code>nums</code> 。如果一对整数 <code>x</code><code>y</code> 满足以下条件,则称其为 <strong>强数对</strong> </p>
<ul>
<li><code>|x - y| &lt;= min(x, y)</code></li>
</ul>
<p>你需要从 <code>nums</code> 中选出两个整数,且满足:这两个整数可以形成一个强数对,并且它们的按位异或(<code>XOR</code>)值是在该数组所有强数对中的<strong> 最大值 </strong></p>
<p>返回数组 <code>nums</code> 所有可能的强数对中的<strong> 最大 </strong>异或值。</p>
<p><strong>注意</strong>,你可以选择同一个整数两次来形成一个强数对。</p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<pre>
<strong>输入:</strong>nums = [1,2,3,4,5]
<strong>输出:</strong>7
<strong>解释:</strong>数组<code> nums </code>中有 11 个强数对:(1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) 和 (5, 5) 。
这些强数对中的最大异或值是 3 XOR 4 = 7 。
</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<strong>输入:</strong>nums = [10,100]
<strong>输出:</strong>0
<strong>解释:</strong>数组<code> nums </code>中有 2 个强数对:(10, 10) 和 (100, 100) 。
这些强数对中的最大异或值是 10 XOR 10 = 0 ,数对 (100, 100) 的异或值也是 100 XOR 100 = 0 。
</pre>
<p><strong class="example">示例 3</strong></p>
<pre>
<strong>输入:</strong>nums = [500,520,2500,3000]
<strong>输出:</strong>1020
<strong>解释:</strong>数组<code> nums </code>中有 6 个强数对:(500, 500), (500, 520), (520, 520), (2500, 2500), (2500, 3000) 和 (3000, 3000) 。
这些强数对中的最大异或值是 500 XOR 520 = 1020 ;另一个异或值非零的数对是 (5, 6) ,其异或值是 2500 XOR 3000 = 636 。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 5 * 10<sup>4</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 2<sup>20</sup> - 1</code></li>
</ul>

View File

@ -0,0 +1,43 @@
<p>一场比赛中共有 <code>n</code> 支队伍,按从 <code>0</code>&nbsp; <code>n - 1</code> 编号。</p>
<p>给你一个下标从 <strong>0</strong> 开始、大小为 <code>n * n</code> 的二维布尔矩阵 <code>grid</code> 。对于满足&nbsp;<code>0 &lt;= i, j &lt;= n - 1</code><code>i != j</code> 的所有 <code>i, j</code> :如果 <code>grid[i][j] == 1</code>,那么 <code>i</code> 队比 <code>j</code><strong></strong> ;否则,<code>j</code> 队比 <code>i</code><strong></strong></p>
<p>在这场比赛中,如果不存在某支强于 <code>a</code> 队的队伍,则认为 <code>a</code> 队将会是 <strong>冠军</strong></p>
<p>返回这场比赛中将会成为冠军的队伍。</p>
<p>&nbsp;</p>
<p><strong>示例 1</strong></p>
<pre>
<strong>输入:</strong>grid = [[0,1],[0,0]]
<strong>输出:</strong>0
<strong>解释:</strong>比赛中有两支队伍。
grid[0][1] == 1 表示 0 队比 1 队强。所以 0 队是冠军。
</pre>
<p><strong>示例 2</strong></p>
<pre>
<strong>输入:</strong>grid = [[0,0,1],[1,0,1],[0,0,0]]
<strong>输出:</strong>1
<strong>解释:</strong>比赛中有三支队伍。
grid[1][0] == 1 表示 1 队比 0 队强。
grid[1][2] == 1 表示 1 队比 2 队强。
所以 1 队是冠军。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>n == grid.length</code></li>
<li><code>n == grid[i].length</code></li>
<li><code>2 &lt;= n &lt;= 100</code></li>
<li><code>grid[i][j]</code> 的值为 <code>0</code><code>1</code><meta charset="UTF-8" /></li>
<li>对于所有&nbsp;<code>i</code><code> grid[i][i]</code>&nbsp;等于&nbsp;<code>0.</code></li>
<li>对于满足&nbsp;<code>i != j</code> 的所有 <code>i, j</code> <code>grid[i][j] != grid[j][i]</code> 均成立</li>
<li>生成的输入满足:如果 <code>a</code> 队比 <code>b</code> 队强,<code>b</code> 队比 <code>c</code> 队强,那么 <code>a</code> 队比 <code>c</code> 队强</li>
</ul>

View File

@ -0,0 +1,53 @@
<p>一场比赛中共有 <code>n</code> 支队伍,按从 <code>0</code>&nbsp; <code>n - 1</code> 编号。每支队伍也是 <strong>有向无环图DAG</strong> 上的一个节点。</p>
<p>给你一个整数 <code>n</code> 和一个下标从 <strong>0</strong> 开始、长度为 <code>m</code> 的二维整数数组 <code>edges</code> 表示这个有向无环图,其中 <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>]</code> 表示图中存在一条从 <code>u<sub>i</sub></code> 队到 <code>v<sub>i</sub></code> 队的有向边。</p>
<p><code>a</code> 队到 <code>b</code> 队的有向边意味着 <code>a</code> 队比 <code>b</code><strong></strong> ,也就是 <code>b</code> 队比 <code>a</code><strong></strong></p>
<p>在这场比赛中,如果不存在某支强于 <code>a</code> 队的队伍,则认为 <code>a</code> 队将会是 <strong>冠军</strong></p>
<p>如果这场比赛存在 <strong>唯一</strong> 一个冠军,则返回将会成为冠军的队伍。否则,返回<em> </em><code>-1</code><em></em></p>
<p><strong>注意</strong></p>
<ul>
<li><strong></strong> 是形如 <code>a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>, a<sub>n+1</sub></code> 的一个序列,且满足:节点 <code>a<sub>1</sub></code> 与节点 <code>a<sub>n+1</sub></code> 是同一个节点;节点 <code>a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub></code> 互不相同;对于范围&nbsp;<code>[1, n]</code> 中的每个 <code>i</code> ,均存在一条从节点 <code>a<sub>i</sub></code> 到节点 <code>a<sub>i+1</sub></code> 的有向边。</li>
<li><strong>有向无环图</strong> 是不存在任何环的有向图。</li>
</ul>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<p><img height="300" src="https://assets.leetcode.com/uploads/2023/10/19/graph-3.png" width="300" /></p>
<pre>
<strong>输入:</strong>n = 3, edges = [[0,1],[1,2]]
<strong>输出:</strong>0
<strong>解释:</strong>1 队比 0 队弱。2 队比 1 队弱。所以冠军是 0 队。
</pre>
<p><strong class="example">示例 2</strong></p>
<p><img height="300" src="https://assets.leetcode.com/uploads/2023/10/19/graph-4.png" width="300" /></p>
<pre>
<strong>输入:</strong>n = 4, edges = [[0,2],[1,3],[1,2]]
<strong>输出:</strong>-1
<strong>解释:</strong>2 队比 0 队和 1 队弱。3 队比 1 队弱。但是 1 队和 0 队之间不存在强弱对比。所以答案是 -1 。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 100</code></li>
<li><code>m == edges.length</code></li>
<li><code>0 &lt;= m &lt;= n * (n - 1) / 2</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>0 &lt;= edge[i][j] &lt;= n - 1</code></li>
<li><code>edges[i][0] != edges[i][1]</code></li>
<li>生成的输入满足:如果 <code>a</code> 队比 <code>b</code> 队强,就不存在 <code>b</code> 队比 <code>a</code> 队强</li>
<li>生成的输入满足:如果 <code>a</code> 队比 <code>b</code> 队强,<code>b</code> 队比 <code>c</code> 队强,那么 <code>a</code> 队比 <code>c</code> 队强</li>
</ul>

View File

@ -0,0 +1,62 @@
<p>给你两个下标从 <strong>0</strong> 开始的整数数组 <code>nums1</code><code>nums2</code> ,这两个数组的长度都是 <code>n</code></p>
<p>你可以执行一系列<strong> 操作(可能不执行)</strong></p>
<p>在每次操作中,你可以选择一个在范围 <code>[0, n - 1]</code> 内的下标 <code>i</code> ,并交换 <code>nums1[i]</code><code>nums2[i]</code> 的值。</p>
<p>你的任务是找到满足以下条件所需的 <strong>最小</strong> 操作次数:</p>
<ul>
<li><code>nums1[n - 1]</code> 等于 <code>nums1</code> 中所有元素的 <strong>最大值</strong> ,即 <code>nums1[n - 1] = max(nums1[0], nums1[1], ..., nums1[n - 1])</code></li>
<li><code>nums2[n - 1]</code> 等于 <code>nums2</code> 中所有元素的 <strong>最大值</strong> ,即 <code>nums2[n - 1] = max(nums2[0], nums2[1], ..., nums2[n - 1])</code></li>
</ul>
<p>以整数形式,表示并返回满足上述 <strong>全部</strong> 条件所需的 <strong>最小</strong> 操作次数,如果无法同时满足两个条件,则返回 <code>-1</code></p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<pre>
<strong>输入:</strong>nums1 = [1,2,7]nums2 = [4,5,3]
<strong>输出:</strong>1
<strong>解释:</strong>在这个示例中,可以选择下标 i = 2 执行一次操作。
交换 nums1[2] 和 nums2[2] 的值nums1 变为 [1,2,3] nums2 变为 [4,5,7] 。
同时满足两个条件。
可以证明,需要执行的最小操作次数为 1 。
因此,答案是 1 。
</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<strong>输入:</strong>nums1 = [2,3,4,5,9]nums2 = [8,8,4,4,4]
<strong>输出:</strong>2
<strong>解释:</strong>在这个示例中,可以执行以下操作:
首先,选择下标 i = 4 执行操作。
交换 nums1[4] 和 nums2[4] 的值nums1 变为 [2,3,4,5,4] nums2 变为 [8,8,4,4,9] 。
然后,选择下标 i = 3 执行操作。
交换 nums1[3] 和 nums2[3] 的值nums1 变为 [2,3,4,4,4] nums2 变为 [8,8,4,5,9] 。
同时满足两个条件。
可以证明,需要执行的最小操作次数为 2 。
因此,答案是 2 。
</pre>
<p><strong class="example">示例 3</strong></p>
<pre>
<strong>输入:</strong>nums1 = [1,5,4]nums2 = [2,5,3]
<strong>输出:</strong>-1
<strong>解释:</strong>在这个示例中,无法同时满足两个条件。
因此,答案是 -1 。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= n == nums1.length == nums2.length &lt;= 1000</code></li>
<li><code>1 &lt;= nums1[i] &lt;= 10<sup>9</sup></code></li>
<li><code>1 &lt;= nums2[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,30 @@
<p>给你两个正整数&nbsp;<code>n</code>&nbsp;<code>limit</code>&nbsp;</p>
<p>请你将 <code>n</code>&nbsp;颗糖果分给 <code>3</code>&nbsp;位小朋友,确保没有任何小朋友得到超过 <code>limit</code>&nbsp;颗糖果,请你返回满足此条件下的&nbsp;<strong>总方案数</strong>&nbsp;</p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<pre>
<b>输入:</b>n = 5, limit = 2
<b>输出:</b>3
<b>解释:</b>总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 (1, 2, 2) (2, 1, 2) 和 (2, 2, 1) 。
</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<b>输入:</b>n = 3, limit = 3
<b>输出:</b>10
<b>解释:</b>总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 (0, 0, 3) (0, 1, 2) (0, 2, 1) (0, 3, 0) (1, 0, 2) (1, 1, 1) (1, 2, 0) (2, 0, 1) (2, 1, 0) 和 (3, 0, 0) 。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 50</code></li>
<li><code>1 &lt;= limit &lt;= 50</code></li>
</ul>

View File

@ -0,0 +1,30 @@
<p>给你两个正整数&nbsp;<code>n</code>&nbsp;<code>limit</code>&nbsp;</p>
<p>请你将 <code>n</code>&nbsp;颗糖果分给 <code>3</code>&nbsp;位小朋友,确保没有任何小朋友得到超过 <code>limit</code>&nbsp;颗糖果,请你返回满足此条件下的&nbsp;<strong>总方案数</strong>&nbsp;</p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<pre>
<b>输入:</b>n = 5, limit = 2
<b>输出:</b>3
<b>解释:</b>总共有 3 种方法分配 5 颗糖果,且每位小朋友的糖果数不超过 2 (1, 2, 2) (2, 1, 2) 和 (2, 2, 1) 。
</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<b>输入:</b>n = 3, limit = 3
<b>输出:</b>10
<b>解释:</b>总共有 10 种方法分配 3 颗糖果,且每位小朋友的糖果数不超过 3 (0, 0, 3) (0, 1, 2) (0, 2, 1) (0, 3, 0) (1, 0, 2) (1, 1, 1) (1, 2, 0) (2, 0, 1) (2, 1, 0) 和 (3, 0, 0) 。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>6</sup></code></li>
<li><code>1 &lt;= limit &lt;= 10<sup>6</sup></code></li>
</ul>

View File

@ -0,0 +1,62 @@
<p>给你一个下标从 <strong>0</strong>&nbsp;开始大小为&nbsp;<code>m * n</code>&nbsp;的整数矩阵&nbsp;<code>values</code>&nbsp;,表示&nbsp;<code>m</code>&nbsp;个不同商店里&nbsp;<code>m * n</code>&nbsp;件不同的物品。每个商店有 <code>n</code>&nbsp;件物品,第&nbsp;<code>i</code>&nbsp;个商店的第 <code>j</code>&nbsp;件物品的价值为&nbsp;<code>values[i][j]</code>&nbsp;。除此以外,第&nbsp;<code>i</code>&nbsp;个商店的物品已经按照价值非递增排好序了,也就是说对于所有&nbsp;<code>0 &lt;= j &lt; n - 1</code>&nbsp;都有&nbsp;<code>values[i][j] &gt;= values[i][j + 1]</code>&nbsp;</p>
<p>每一天,你可以在一个商店里购买一件物品。具体来说,在第&nbsp;<code>d</code>&nbsp;天,你可以:</p>
<ul>
<li>选择商店&nbsp;<code>i</code>&nbsp;</li>
<li>购买数组中最右边的物品&nbsp;<code>j</code>&nbsp;,开销为&nbsp;<code>values[i][j] * d</code>&nbsp;。换句话说,选择该商店中还没购买过的物品中最大的下标&nbsp;<code>j</code>&nbsp;,并且花费&nbsp;<code>values[i][j] * d</code>&nbsp;去购买。</li>
</ul>
<p><strong>注意</strong>,所有物品都视为不同的物品。比方说如果你已经从商店 <code>1</code>&nbsp;购买了物品&nbsp;<code>0</code>&nbsp;,你还可以在别的商店里购买其他商店的物品&nbsp;<code>0</code>&nbsp;</p>
<p>请你返回购买所有 <code>m * n</code>&nbsp;件物品需要的 <strong>最大开销</strong>&nbsp;</p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<pre>
<b>输入:</b>values = [[8,5,2],[6,4,1],[9,7,3]]
<b>输出:</b>285
<b>解释:</b>第一天,从商店 1 购买物品 2 ,开销为 values[1][2] * 1 = 1 。
第二天,从商店 0 购买物品 2 ,开销为 values[0][2] * 2 = 4 。
第三天,从商店 2 购买物品 2 ,开销为 values[2][2] * 3 = 9 。
第四天,从商店 1 购买物品 1 ,开销为 values[1][1] * 4 = 16 。
第五天,从商店 0 购买物品 1 ,开销为 values[0][1] * 5 = 25 。
第六天,从商店 1 购买物品 0 ,开销为 values[1][0] * 6 = 36 。
第七天,从商店 2 购买物品 1 ,开销为 values[2][1] * 7 = 49 。
第八天,从商店 0 购买物品 0 ,开销为 values[0][0] * 8 = 64 。
第九天,从商店 2 购买物品 0 ,开销为 values[2][0] * 9 = 81 。
所以总开销为 285 。
285 是购买所有 m * n 件物品的最大总开销。
</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<b>输入:</b>values = [[10,8,6,4,2],[9,7,5,3,2]]
<b>输出:</b>386
<b>解释:</b>第一天,从商店 0 购买物品 4 ,开销为 values[0][4] * 1 = 2 。
第二天,从商店 1 购买物品 4 ,开销为 values[1][4] * 2 = 4 。
第三天,从商店 1 购买物品 3 ,开销为 values[1][3] * 3 = 9 。
第四天,从商店 0 购买物品 3 ,开销为 values[0][3] * 4 = 16 。
第五天,从商店 1 购买物品 2 ,开销为 values[1][2] * 5 = 25 。
第六天,从商店 0 购买物品 2 ,开销为 values[0][2] * 6 = 36 。
第七天,从商店 1 购买物品 1 ,开销为 values[1][1] * 7 = 49 。
第八天,从商店 0 购买物品 1 ,开销为 values[0][1] * 8 = 64 。
第九天,从商店 1 购买物品 0 ,开销为 values[1][0] * 9 = 81 。
第十天,从商店 0 购买物品 0 ,开销为 values[0][0] * 10 = 100 。
所以总开销为 386 。
386 是购买所有 m * n 件物品的最大总开销。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= m == values.length &lt;= 10</code></li>
<li><code>1 &lt;= n == values[i].length &lt;= 10<sup>4</sup></code></li>
<li><code>1 &lt;= values[i][j] &lt;= 10<sup>6</sup></code></li>
<li><code>values[i]</code>&nbsp;按照非递增顺序排序。</li>
</ul>

View File

@ -0,0 +1,42 @@
<p>给你一个整数&nbsp;<code>n</code>&nbsp;</p>
<p>如果一个字符串&nbsp;<code>s</code>&nbsp;只包含小写英文字母,<strong></strong>&nbsp;<code>s</code>&nbsp;的字符重新排列后,新字符串包含&nbsp;<strong>子字符串</strong>&nbsp;<code>"leet"</code> ,那么我们称字符串 <code>s</code>&nbsp;是一个 <strong></strong>&nbsp;字符串。</p>
<p>比方说:</p>
<ul>
<li>字符串&nbsp;<code>"lteer"</code>&nbsp;是好字符串,因为重新排列后可以得到&nbsp;<code>"leetr"</code>&nbsp;</li>
<li><code>"letl"</code>&nbsp;不是好字符串,因为无法重新排列并得到子字符串&nbsp;<code>"leet"</code>&nbsp;</li>
</ul>
<p>请你返回长度为 <code>n</code>&nbsp;的好字符串 <strong></strong>&nbsp;数目。</p>
<p>由于答案可能很大,将答案对<strong>&nbsp;</strong><code>10<sup>9</sup> + 7</code>&nbsp;<strong>取余</strong>&nbsp;后返回。</p>
<p><strong>子字符串</strong>&nbsp;是一个字符串中一段连续的字符序列。</p>
<div class="notranslate" style="all: initial;">&nbsp;</div>
<p><strong class="example">示例 1</strong></p>
<pre>
<b>输入:</b>n = 4
<b>输出:</b>12
<b>解释:</b>总共有 12 个字符串重新排列后包含子字符串 "leet" "eelt" "eetl" "elet" "elte" "etel" "etle" "leet" "lete" "ltee" "teel" "tele" 和 "tlee" 。
</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<b>输入:</b>n = 10
<b>输出:</b>83943898
<b>解释:</b>长度为 10 的字符串重新排列后包含子字符串 "leet" 的方案数为 526083947580 。所以答案为 526083947580 % (10<sup>9</sup> + 7) = 83943898 。
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>5</sup></code></li>
</ul>

View File

@ -0,0 +1,54 @@
<p>给你一个长度为 <code>n</code> 、下标从 <strong>0</strong> 开始的二维字符串数组 <code>access_times</code> 。对于每个 <code>i</code><code>0 &lt;= i &lt;= n - 1</code> <code>access_times[i][0]</code> 表示某位员工的姓名,<code>access_times[i][1]</code> 表示该员工的访问时间。<code>access_times</code> 中的所有条目都发生在同一天内。</p>
<p>访问时间用 <strong>四位</strong> 数字表示, 符合 <strong>24 小时制</strong> ,例如 <code>"0800"</code><code>"2250"</code></p>
<p>如果员工在 <strong>同一小时内</strong> 访问系统 <strong>三次或更多</strong> ,则称其为 <strong>高访问</strong> 员工。</p>
<p>时间间隔正好相差一小时的时间 <strong></strong> 被视为同一小时内。例如,<code>"0815"</code><code>"0915"</code> 不属于同一小时内。</p>
<p>一天开始和结束时的访问时间不被计算为同一小时内。例如,<code>"0005"</code><code>"2350"</code> 不属于同一小时内。</p>
<p>以列表形式,按任意顺序,返回所有 <strong>高访问</strong> 员工的姓名。</p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<pre>
<strong>输入:</strong>access_times = [["a","0549"],["b","0457"],["a","0532"],["a","0621"],["b","0540"]]
<strong>输出:</strong>["a"]
<strong>解释:</strong>"a" 在时间段 [05:32, 06:31] 内有三条访问记录,时间分别为 05:32 、05:49 和 06:21 。
但是 "b" 的访问记录只有两条。
因此,答案是 ["a"] 。</pre>
<p><strong class="example">示例 2</strong></p>
<pre>
<strong>输入:</strong>access_times = [["d","0002"],["c","0808"],["c","0829"],["e","0215"],["d","1508"],["d","1444"],["d","1410"],["c","0809"]]
<strong>输出:</strong>["c","d"]
<strong>解释:</strong>"c" 在时间段 [08:08, 09:07] 内有三条访问记录,时间分别为 08:08 、08:09 和 08:29 。
"d" 在时间段 [14:10, 15:09] 内有三条访问记录,时间分别为 14:10 、14:44 和 15:08 。
然而,"e" 只有一条访问记录,因此不能包含在答案中,最终答案是 ["c","d"] 。</pre>
<p><strong class="example">示例 3</strong></p>
<pre>
<strong>输入:</strong>access_times = [["cd","1025"],["ab","1025"],["cd","1046"],["cd","1055"],["ab","1124"],["ab","1120"]]
<strong>输出:</strong>["ab","cd"]
<strong>解释:</strong>"ab"在时间段 [10:25, 11:24] 内有三条访问记录,时间分别为 10:25 、11:20 和 11:24 。
"cd" 在时间段 [10:25, 11:24] 内有三条访问记录,时间分别为 10:25 、10:46 和 10:55 。
因此,答案是 ["ab","cd"] 。</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= access_times.length &lt;= 100</code></li>
<li><code>access_times[i].length == 2</code></li>
<li><code>1 &lt;= access_times[i][0].length &lt;= 10</code></li>
<li><code>access_times[i][0]</code> 仅由小写英文字母组成。</li>
<li><code>access_times[i][1].length == 4</code></li>
<li><code>access_times[i][1]</code> 采用24小时制表示时间。</li>
<li><code>access_times[i][1]</code> 仅由数字 <code>'0'</code><code>'9'</code> 组成。</li>
</ul>

View File

@ -0,0 +1,52 @@
<p>There is an undirected tree with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>, and rooted at node <code>0</code>. You are given&nbsp;a 2D integer array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree.</p>
<p>You are also given a <strong>0-indexed</strong> integer array <code>values</code> of length <code>n</code>, where <code>values[i]</code> is the <strong>value</strong> associated with the <code>i<sup>th</sup></code> node.</p>
<p>You start with a score of <code>0</code>. In one operation, you can:</p>
<ul>
<li>Pick any node <code>i</code>.</li>
<li>Add <code>values[i]</code> to your score.</li>
<li>Set <code>values[i]</code> to <code>0</code>.</li>
</ul>
<p>A tree is <strong>healthy</strong> if the sum of values on the path from the root to any leaf node is different than zero.</p>
<p>Return <em>the <strong>maximum score</strong> you can obtain after performing these operations on the tree any number of times so that it remains <strong>healthy</strong>.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2023/10/11/graph-13-1.png" style="width: 515px; height: 443px;" />
<pre>
<strong>Input:</strong> edges = [[0,1],[0,2],[0,3],[2,4],[4,5]], values = [5,2,5,2,1,1]
<strong>Output:</strong> 11
<strong>Explanation:</strong> We can choose nodes 1, 2, 3, 4, and 5. The value of the root is non-zero. Hence, the sum of values on the path from the root to any leaf is different than zero. Therefore, the tree is healthy and the score is values[1] + values[2] + values[3] + values[4] + values[5] = 11.
It can be shown that 11 is the maximum score obtainable after any number of operations on the tree.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2023/10/11/graph-14-2.png" style="width: 522px; height: 245px;" />
<pre>
<strong>Input:</strong> edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]], values = [20,10,9,7,4,3,5]
<strong>Output:</strong> 40
<strong>Explanation:</strong> We can choose nodes 0, 2, 3, and 4.
- The sum of values on the path from 0 to 4 is equal to 10.
- The sum of values on the path from 0 to 3 is equal to 10.
- The sum of values on the path from 0 to 5 is equal to 3.
- The sum of values on the path from 0 to 6 is equal to 5.
Therefore, the tree is healthy and the score is values[0] + values[2] + values[3] + values[4] = 40.
It can be shown that 40 is the maximum score obtainable after any number of operations on the tree.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 &lt;= n &lt;= 2 * 10<sup>4</sup></code></li>
<li><code>edges.length == n - 1</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>0 &lt;= a<sub>i</sub>, b<sub>i</sub> &lt; n</code></li>
<li><code>values.length == n</code></li>
<li><code>1 &lt;= values[i] &lt;= 10<sup>9</sup></code></li>
<li>The input is generated such that <code>edges</code> represents a valid tree.</li>
</ul>

View File

@ -0,0 +1,54 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>.</p>
<p>A <strong>subsequence</strong> of <code>nums</code> having length <code>k</code> and consisting of <strong>indices</strong> <code>i<sub>0</sub>&nbsp;&lt;&nbsp;i<sub>1</sub> &lt;&nbsp;... &lt; i<sub>k-1</sub></code> is <strong>balanced</strong> if the following holds:</p>
<ul>
<li><code>nums[i<sub>j</sub>] - nums[i<sub>j-1</sub>] &gt;= i<sub>j</sub> - i<sub>j-1</sub></code>, for every <code>j</code> in the range <code>[1, k - 1]</code>.</li>
</ul>
<p>A <strong>subsequence</strong> of <code>nums</code> having length <code>1</code> is considered balanced.</p>
<p>Return <em>an integer denoting the <strong>maximum</strong> possible <strong>sum of elements</strong> in a <strong>balanced</strong> subsequence of </em><code>nums</code>.</p>
<p>A <strong>subsequence</strong> of an array is a new <strong>non-empty</strong> array that is formed from the original array by deleting some (<strong>possibly none</strong>) of the elements without disturbing the relative positions of the remaining elements.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,3,5,6]
<strong>Output:</strong> 14
<strong>Explanation:</strong> In this example, the subsequence [3,5,6] consisting of indices 0, 2, and 3 can be selected.
nums[2] - nums[0] &gt;= 2 - 0.
nums[3] - nums[2] &gt;= 3 - 2.
Hence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
The subsequence consisting of indices 1, 2, and 3 is also valid.
It can be shown that it is not possible to get a balanced subsequence with a sum greater than 14.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,-1,-3,8]
<strong>Output:</strong> 13
<strong>Explanation:</strong> In this example, the subsequence [5,8] consisting of indices 0 and 3 can be selected.
nums[3] - nums[0] &gt;= 3 - 0.
Hence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
It can be shown that it is not possible to get a balanced subsequence with a sum greater than 13.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1]
<strong>Output:</strong> -1
<strong>Explanation:</strong> In this example, the subsequence [-1] can be selected.
It is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> &lt;= nums[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,47 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>. A pair of integers <code>x</code> and <code>y</code> is called a <strong>strong</strong> pair if it satisfies the condition:</p>
<ul>
<li><code>|x - y| &lt;= min(x, y)</code></li>
</ul>
<p>You need to select two integers from <code>nums</code> such that they form a strong pair and their bitwise <code>XOR</code> is the <strong>maximum</strong> among all strong pairs in the array.</p>
<p>Return <em>the <strong>maximum</strong> </em><code>XOR</code><em> value out of all possible strong pairs in the array</em> <code>nums</code>.</p>
<p><strong>Note</strong> that you can pick the same integer twice to form a pair.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 11 strong pairs in the array <code>nums</code>: (1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) and (5, 5).
The maximum XOR possible from these pairs is 3 XOR 4 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [10,100]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are 2 strong pairs in the array <code>nums</code>: (10, 10) and (100, 100).
The maximum XOR possible from these pairs is 10 XOR 10 = 0 since the pair (100, 100) also gives 100 XOR 100 = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,6,25,30]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 6 strong pairs in the array <code>nums</code>: (5, 5), (5, 6), (6, 6), (25, 25), (25, 30) and (30, 30).
The maximum XOR possible from these pairs is 25 XOR 30 = 7 since the only other non-zero XOR value is 5 XOR 6 = 3.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 50</code></li>
<li><code>1 &lt;= nums[i] &lt;= 100</code></li>
</ul>

View File

@ -0,0 +1,47 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>. A pair of integers <code>x</code> and <code>y</code> is called a <strong>strong</strong> pair if it satisfies the condition:</p>
<ul>
<li><code>|x - y| &lt;= min(x, y)</code></li>
</ul>
<p>You need to select two integers from <code>nums</code> such that they form a strong pair and their bitwise <code>XOR</code> is the <strong>maximum</strong> among all strong pairs in the array.</p>
<p>Return <em>the <strong>maximum</strong> </em><code>XOR</code><em> value out of all possible strong pairs in the array</em> <code>nums</code>.</p>
<p><strong>Note</strong> that you can pick the same integer twice to form a pair.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 11 strong pairs in the array <code>nums</code>: (1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) and (5, 5).
The maximum XOR possible from these pairs is 3 XOR 4 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [10,100]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are 2 strong pairs in the array nums: (10, 10) and (100, 100).
The maximum XOR possible from these pairs is 10 XOR 10 = 0 since the pair (100, 100) also gives 100 XOR 100 = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [500,520,2500,3000]
<strong>Output:</strong> 1020
<strong>Explanation:</strong> There are 6 strong pairs in the array nums: (500, 500), (500, 520), (520, 520), (2500, 2500), (2500, 3000) and (3000, 3000).
The maximum XOR possible from these pairs is 500 XOR 520 = 1020 since the only other non-zero XOR value is 2500 XOR 3000 = 636.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 5 * 10<sup>4</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 2<sup>20</sup> - 1</code></li>
</ul>

View File

@ -0,0 +1,41 @@
<p>There are <code>n</code> teams numbered from <code>0</code> to <code>n - 1</code> in a tournament.</p>
<p>Given a <strong>0-indexed</strong> 2D boolean matrix <code>grid</code> of size <code>n * n</code>. For all <code>i, j</code> that <code>0 &lt;= i, j &lt;= n - 1</code> and <code>i != j</code> team <code>i</code> is <strong>stronger</strong> than team <code>j</code> if <code>grid[i][j] == 1</code>, otherwise, team <code>j</code> is <strong>stronger</strong> than team <code>i</code>.</p>
<p>Team <code>a</code> will be the <strong>champion</strong> of the tournament if there is no team <code>b</code> that is stronger than team <code>a</code>.</p>
<p>Return <em>the team that will be the champion of the tournament.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> grid = [[0,1],[0,0]]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are two teams in this tournament.
grid[0][1] == 1 means that team 0 is stronger than team 1. So team 0 will be the champion.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> grid = [[0,0,1],[1,0,1],[0,0,0]]
<strong>Output:</strong> 1
<strong>Explanation:</strong> There are three teams in this tournament.
grid[1][0] == 1 means that team 1 is stronger than team 0.
grid[1][2] == 1 means that team 1 is stronger than team 2.
So team 1 will be the champion.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == grid.length</code></li>
<li><code>n == grid[i].length</code></li>
<li><code>2 &lt;= n &lt;= 100</code></li>
<li><code>grid[i][j]</code> is either <code>0</code> or <code>1</code>.</li>
<li>For all <code>i grid[i][i]</code> is <code>0.</code></li>
<li>For all <code>i, j</code> that <code>i != j</code>, <code>grid[i][j] != grid[j][i]</code>.</li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code> and team <code>b</code> is stronger than team <code>c</code>, then team <code>a</code> is stronger than team <code>c</code>.</li>
</ul>

View File

@ -0,0 +1,51 @@
<p>There are <code>n</code> teams numbered from <code>0</code> to <code>n - 1</code> in a tournament; each team is also a node in a <strong>DAG</strong>.</p>
<p>You are given the integer <code>n</code> and a <strong>0-indexed</strong> 2D integer array <code>edges</code> of length <code><font face="monospace">m</font></code> representing the <strong>DAG</strong>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>]</code> indicates that there is a directed edge from team <code>u<sub>i</sub></code> to team <code>v<sub>i</sub></code> in the graph.</p>
<p>A directed edge from <code>a</code> to <code>b</code> in the graph means that team <code>a</code> is <strong>stronger</strong> than team <code>b</code> and team <code>b</code> is <strong>weaker</strong> than team <code>a</code>.</p>
<p>Team <code>a</code> will be the <strong>champion</strong> of the tournament if there is no team <code>b</code> that is <strong>stronger</strong> than team <code>a</code>.</p>
<p>Return <em>the team that will be the <strong>champion</strong> of the tournament if there is a <strong>unique</strong> champion, otherwise, return </em><code>-1</code><em>.</em></p>
<p><strong>Notes</strong></p>
<ul>
<li>A <strong>cycle</strong> is a series of nodes <code>a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>, a<sub>n+1</sub></code> such that node <code>a<sub>1</sub></code> is the same node as node <code>a<sub>n+1</sub></code>, the nodes <code>a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub></code> are distinct, and there is a directed edge from the node <code>a<sub>i</sub></code> to node <code>a<sub>i+1</sub></code> for every <code>i</code> in the range <code>[1, n]</code>.</li>
<li>A <strong>DAG</strong> is a directed graph that does not have any <strong>cycle</strong>.</li>
</ul>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<p><img height="300" src="https://assets.leetcode.com/uploads/2023/10/19/graph-3.png" width="300" /></p>
<pre>
<strong>Input:</strong> n = 3, edges = [[0,1],[1,2]]
<strong>Output:</strong> 0
<strong>Explanation: </strong>Team 1 is weaker than team 0. Team 2 is weaker than team 1. So the champion is team 0.
</pre>
<p><strong class="example">Example 2:</strong></p>
<p><img height="300" src="https://assets.leetcode.com/uploads/2023/10/19/graph-4.png" width="300" /></p>
<pre>
<strong>Input:</strong> n = 4, edges = [[0,2],[1,3],[1,2]]
<strong>Output:</strong> -1
<strong>Explanation:</strong> Team 2 is weaker than team 0 and team 1. Team 3 is weaker than team 1. But team 1 and team 0 are not weaker than any other teams. So the answer is -1.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 100</code></li>
<li><code>m == edges.length</code></li>
<li><code>0 &lt;= m &lt;= n * (n - 1) / 2</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>0 &lt;= edge[i][j] &lt;= n - 1</code></li>
<li><code>edges[i][0] != edges[i][1]</code></li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code>, team <code>b</code> is not stronger than team <code>a</code>.</li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code> and team <code>b</code> is stronger than team <code>c</code>, then team <code>a</code> is stronger than team <code>c</code>.</li>
</ul>

View File

@ -0,0 +1,60 @@
<p>You are given two <strong>0-indexed</strong> integer arrays, <code>nums1</code> and <code>nums2</code>, both having length <code>n</code>.</p>
<p>You are allowed to perform a series of <strong>operations</strong> (<strong>possibly none</strong>).</p>
<p>In an operation, you select an index <code>i</code> in the range <code>[0, n - 1]</code> and <strong>swap</strong> the values of <code>nums1[i]</code> and <code>nums2[i]</code>.</p>
<p>Your task is to find the <strong>minimum</strong> number of operations required to satisfy the following conditions:</p>
<ul>
<li><code>nums1[n - 1]</code> is equal to the <strong>maximum value</strong> among all elements of <code>nums1</code>, i.e., <code>nums1[n - 1] = max(nums1[0], nums1[1], ..., nums1[n - 1])</code>.</li>
<li><code>nums2[n - 1]</code> is equal to the <strong>maximum</strong> <strong>value</strong> among all elements of <code>nums2</code>, i.e., <code>nums2[n - 1] = max(nums2[0], nums2[1], ..., nums2[n - 1])</code>.</li>
</ul>
<p>Return <em>an integer denoting the <strong>minimum</strong> number of operations needed to meet <strong>both</strong> conditions</em>, <em>or </em><code>-1</code><em> if it is <strong>impossible</strong> to satisfy both conditions.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [1,2,7], nums2 = [4,5,3]
<strong>Output:</strong> 1
<strong>Explanation:</strong> In this example, an operation can be performed using index i = 2.
When nums1[2] and nums2[2] are swapped, nums1 becomes [1,2,3] and nums2 becomes [4,5,7].
Both conditions are now satisfied.
It can be shown that the minimum number of operations needed to be performed is 1.
So, the answer is 1.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [2,3,4,5,9], nums2 = [8,8,4,4,4]
<strong>Output:</strong> 2
<strong>Explanation:</strong> In this example, the following operations can be performed:
First operation using index i = 4.
When nums1[4] and nums2[4] are swapped, nums1 becomes [2,3,4,5,4], and nums2 becomes [8,8,4,4,9].
Another operation using index i = 3.
When nums1[3] and nums2[3] are swapped, nums1 becomes [2,3,4,4,4], and nums2 becomes [8,8,4,5,9].
Both conditions are now satisfied.
It can be shown that the minimum number of operations needed to be performed is 2.
So, the answer is 2.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [1,5,4], nums2 = [2,5,3]
<strong>Output:</strong> -1
<strong>Explanation:</strong> In this example, it is not possible to satisfy both conditions.
So, the answer is -1.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n == nums1.length == nums2.length &lt;= 1000</code></li>
<li><code>1 &lt;= nums1[i] &lt;= 10<sup>9</sup></code></li>
<li><code>1 &lt;= nums2[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,28 @@
<p>You are given two positive integers <code>n</code> and <code>limit</code>.</p>
<p>Return <em>the <strong>total number</strong> of ways to distribute </em><code>n</code> <em>candies among </em><code>3</code><em> children such that no child gets more than </em><code>limit</code><em> candies.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 5, limit = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> There are 3 ways to distribute 5 candies such that no child gets more than 2 candies: (1, 2, 2), (2, 1, 2) and (2, 2, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, limit = 3
<strong>Output:</strong> 10
<strong>Explanation:</strong> There are 10 ways to distribute 3 candies such that no child gets more than 3 candies: (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0).
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 50</code></li>
<li><code>1 &lt;= limit &lt;= 50</code></li>
</ul>

View File

@ -0,0 +1,28 @@
<p>You are given two positive integers <code>n</code> and <code>limit</code>.</p>
<p>Return <em>the <strong>total number</strong> of ways to distribute </em><code>n</code> <em>candies among </em><code>3</code><em> children such that no child gets more than </em><code>limit</code><em> candies.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 5, limit = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> There are 3 ways to distribute 5 candies such that no child gets more than 2 candies: (1, 2, 2), (2, 1, 2) and (2, 2, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, limit = 3
<strong>Output:</strong> 10
<strong>Explanation:</strong> There are 10 ways to distribute 3 candies such that no child gets more than 3 candies: (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0).
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>6</sup></code></li>
<li><code>1 &lt;= limit &lt;= 10<sup>6</sup></code></li>
</ul>

View File

@ -0,0 +1,60 @@
<p>You are given a <strong>0-indexed</strong> <code>m * n</code> integer matrix <code>values</code>, representing the values of <code>m * n</code> different items in <code>m</code> different shops. Each shop has <code>n</code> items where the <code>j<sup>th</sup></code> item in the <code>i<sup>th</sup></code> shop has a value of <code>values[i][j]</code>. Additionally, the items in the <code>i<sup>th</sup></code> shop are sorted in non-increasing order of value. That is, <code>values[i][j] &gt;= values[i][j + 1]</code> for all <code>0 &lt;= j &lt; n - 1</code>.</p>
<p>On each day, you would like to buy a single item from one of the shops. Specifically, On the <code>d<sup>th</sup></code> day you can:</p>
<ul>
<li>Pick any shop <code>i</code>.</li>
<li>Buy the rightmost available item <code>j</code> for the price of <code>values[i][j] * d</code>. That is, find the greatest index <code>j</code> such that item <code>j</code> was never bought before, and buy it for the price of <code>values[i][j] * d</code>.</li>
</ul>
<p><strong>Note</strong> that all items are pairwise different. For example, if you have bought item <code>0</code> from shop <code>1</code>, you can still buy item <code>0</code> from any other shop.</p>
<p>Return <em>the <strong>maximum amount of money that can be spent</strong> on buying all </em> <code>m * n</code> <em>products</em>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> values = [[8,5,2],[6,4,1],[9,7,3]]
<strong>Output:</strong> 285
<strong>Explanation:</strong> On the first day, we buy product 2 from shop 1 for a price of values[1][2] * 1 = 1.
On the second day, we buy product 2 from shop 0 for a price of values[0][2] * 2 = 4.
On the third day, we buy product 2 from shop 2 for a price of values[2][2] * 3 = 9.
On the fourth day, we buy product 1 from shop 1 for a price of values[1][1] * 4 = 16.
On the fifth day, we buy product 1 from shop 0 for a price of values[0][1] * 5 = 25.
On the sixth day, we buy product 0 from shop 1 for a price of values[1][0] * 6 = 36.
On the seventh day, we buy product 1 from shop 2 for a price of values[2][1] * 7 = 49.
On the eighth day, we buy product 0 from shop 0 for a price of values[0][0] * 8 = 64.
On the ninth day, we buy product 0 from shop 2 for a price of values[2][0] * 9 = 81.
Hence, our total spending is equal to 285.
It can be shown that 285 is the maximum amount of money that can be spent buying all m * n products.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> values = [[10,8,6,4,2],[9,7,5,3,2]]
<strong>Output:</strong> 386
<strong>Explanation:</strong> On the first day, we buy product 4 from shop 0 for a price of values[0][4] * 1 = 2.
On the second day, we buy product 4 from shop 1 for a price of values[1][4] * 2 = 4.
On the third day, we buy product 3 from shop 1 for a price of values[1][3] * 3 = 9.
On the fourth day, we buy product 3 from shop 0 for a price of values[0][3] * 4 = 16.
On the fifth day, we buy product 2 from shop 1 for a price of values[1][2] * 5 = 25.
On the sixth day, we buy product 2 from shop 0 for a price of values[0][2] * 6 = 36.
On the seventh day, we buy product 1 from shop 1 for a price of values[1][1] * 7 = 49.
On the eighth day, we buy product 1 from shop 0 for a price of values[0][1] * 8 = 64
On the ninth day, we buy product 0 from shop 1 for a price of values[1][0] * 9 = 81.
On the tenth day, we buy product 0 from shop 0 for a price of values[0][0] * 10 = 100.
Hence, our total spending is equal to 386.
It can be shown that 386 is the maximum amount of money that can be spent buying all m * n products.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= m == values.length &lt;= 10</code></li>
<li><code>1 &lt;= n == values[i].length &lt;= 10<sup>4</sup></code></li>
<li><code>1 &lt;= values[i][j] &lt;= 10<sup>6</sup></code></li>
<li><code>values[i]</code> are sorted in non-increasing order.</li>
</ul>

View File

@ -0,0 +1,42 @@
<p>You are given an integer <code>n</code>.</p>
<p>A string <code>s</code> is called <strong>good </strong>if it contains only lowercase English characters <strong>and</strong> it is possible to rearrange the characters of <code>s</code> such that the new string contains <code>&quot;leet&quot;</code> as a <strong>substring</strong>.</p>
<p>For example:</p>
<ul>
<li>The string <code>&quot;lteer&quot;</code> is good because we can rearrange it to form <code>&quot;leetr&quot;</code> .</li>
<li><code>&quot;letl&quot;</code> is not good because we cannot rearrange it to contain <code>&quot;leet&quot;</code> as a substring.</li>
</ul>
<p>Return <em>the <strong>total</strong> number of good strings of length </em><code>n</code>.</p>
<p>Since the answer may be large, return it <strong>modulo </strong><code>10<sup>9</sup> + 7</code>.</p>
<p>A <strong>substring</strong> is a contiguous sequence of characters within a string.</p>
<div class="notranslate" style="all: initial;">&nbsp;</div>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 4
<strong>Output:</strong> 12
<strong>Explanation:</strong> The 12 strings which can be rearranged to have &quot;leet&quot; as a substring are: &quot;eelt&quot;, &quot;eetl&quot;, &quot;elet&quot;, &quot;elte&quot;, &quot;etel&quot;, &quot;etle&quot;, &quot;leet&quot;, &quot;lete&quot;, &quot;ltee&quot;, &quot;teel&quot;, &quot;tele&quot;, and &quot;tlee&quot;.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 83943898
<strong>Explanation:</strong> The number of strings with length 10 which can be rearranged to have &quot;leet&quot; as a substring is 526083947580. Hence the answer is 526083947580 % (10<sup>9</sup> + 7) = 83943898.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>5</sup></code></li>
</ul>

View File

@ -0,0 +1,52 @@
<p>You are given a 2D <strong>0-indexed</strong> array of strings, <code>access_times</code>, with size <code>n</code>. For each <code>i</code> where <code>0 &lt;= i &lt;= n - 1</code>, <code>access_times[i][0]</code> represents the name of an employee, and <code>access_times[i][1]</code> represents the access time of that employee. All entries in <code>access_times</code> are within the same day.</p>
<p>The access time is represented as <strong>four digits</strong> using a <strong>24-hour</strong> time format, for example, <code>&quot;0800&quot;</code> or <code>&quot;2250&quot;</code>.</p>
<p>An employee is said to be <strong>high-access</strong> if he has accessed the system <strong>three or more</strong> times within a <strong>one-hour period</strong>.</p>
<p>Times with exactly one hour of difference are <strong>not</strong> considered part of the same one-hour period. For example, <code>&quot;0815&quot;</code> and <code>&quot;0915&quot;</code> are not part of the same one-hour period.</p>
<p>Access times at the start and end of the day are <strong>not</strong> counted within the same one-hour period. For example, <code>&quot;0005&quot;</code> and <code>&quot;2350&quot;</code> are not part of the same one-hour period.</p>
<p>Return <em>a list that contains the names of <strong>high-access</strong> employees with any order you want.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;a&quot;,&quot;0549&quot;],[&quot;b&quot;,&quot;0457&quot;],[&quot;a&quot;,&quot;0532&quot;],[&quot;a&quot;,&quot;0621&quot;],[&quot;b&quot;,&quot;0540&quot;]]
<strong>Output:</strong> [&quot;a&quot;]
<strong>Explanation:</strong> &quot;a&quot; has three access times in the one-hour period of [05:32, 06:31] which are 05:32, 05:49, and 06:21.
But &quot;b&quot; does not have more than two access times at all.
So the answer is [&quot;a&quot;].</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;d&quot;,&quot;0002&quot;],[&quot;c&quot;,&quot;0808&quot;],[&quot;c&quot;,&quot;0829&quot;],[&quot;e&quot;,&quot;0215&quot;],[&quot;d&quot;,&quot;1508&quot;],[&quot;d&quot;,&quot;1444&quot;],[&quot;d&quot;,&quot;1410&quot;],[&quot;c&quot;,&quot;0809&quot;]]
<strong>Output:</strong> [&quot;c&quot;,&quot;d&quot;]
<strong>Explanation:</strong> &quot;c&quot; has three access times in the one-hour period of [08:08, 09:07] which are 08:08, 08:09, and 08:29.
&quot;d&quot; has also three access times in the one-hour period of [14:10, 15:09] which are 14:10, 14:44, and 15:08.
However, &quot;e&quot; has just one access time, so it can not be in the answer and the final answer is [&quot;c&quot;,&quot;d&quot;].</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;cd&quot;,&quot;1025&quot;],[&quot;ab&quot;,&quot;1025&quot;],[&quot;cd&quot;,&quot;1046&quot;],[&quot;cd&quot;,&quot;1055&quot;],[&quot;ab&quot;,&quot;1124&quot;],[&quot;ab&quot;,&quot;1120&quot;]]
<strong>Output:</strong> [&quot;ab&quot;,&quot;cd&quot;]
<strong>Explanation:</strong> &quot;ab&quot; has three access times in the one-hour period of [10:25, 11:24] which are 10:25, 11:20, and 11:24.
&quot;cd&quot; has also three access times in the one-hour period of [10:25, 11:24] which are 10:25, 10:46, and 10:55.
So the answer is [&quot;ab&quot;,&quot;cd&quot;].</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= access_times.length &lt;= 100</code></li>
<li><code>access_times[i].length == 2</code></li>
<li><code>1 &lt;= access_times[i][0].length &lt;= 10</code></li>
<li><code>access_times[i][0]</code> consists only of English small letters.</li>
<li><code>access_times[i][1].length == 4</code></li>
<li><code>access_times[i][1]</code> is in 24-hour time format.</li>
<li><code>access_times[i][1]</code> consists only of <code>&#39;0&#39;</code> to <code>&#39;9&#39;</code>.</li>
</ul>

File diff suppressed because it is too large Load Diff

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,28 @@
<p>You are given two positive integers <code>n</code> and <code>limit</code>.</p>
<p>Return <em>the <strong>total number</strong> of ways to distribute </em><code>n</code> <em>candies among </em><code>3</code><em> children such that no child gets more than </em><code>limit</code><em> candies.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 5, limit = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> There are 3 ways to distribute 5 candies such that no child gets more than 2 candies: (1, 2, 2), (2, 1, 2) and (2, 2, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, limit = 3
<strong>Output:</strong> 10
<strong>Explanation:</strong> There are 10 ways to distribute 3 candies such that no child gets more than 3 candies: (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0).
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 50</code></li>
<li><code>1 &lt;= limit &lt;= 50</code></li>
</ul>

View File

@ -0,0 +1,28 @@
<p>You are given two positive integers <code>n</code> and <code>limit</code>.</p>
<p>Return <em>the <strong>total number</strong> of ways to distribute </em><code>n</code> <em>candies among </em><code>3</code><em> children such that no child gets more than </em><code>limit</code><em> candies.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 5, limit = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong> There are 3 ways to distribute 5 candies such that no child gets more than 2 candies: (1, 2, 2), (2, 1, 2) and (2, 2, 1).
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 3, limit = 3
<strong>Output:</strong> 10
<strong>Explanation:</strong> There are 10 ways to distribute 3 candies such that no child gets more than 3 candies: (0, 0, 3), (0, 1, 2), (0, 2, 1), (0, 3, 0), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0) and (3, 0, 0).
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>6</sup></code></li>
<li><code>1 &lt;= limit &lt;= 10<sup>6</sup></code></li>
</ul>

View File

@ -0,0 +1,41 @@
<p>There are <code>n</code> teams numbered from <code>0</code> to <code>n - 1</code> in a tournament.</p>
<p>Given a <strong>0-indexed</strong> 2D boolean matrix <code>grid</code> of size <code>n * n</code>. For all <code>i, j</code> that <code>0 &lt;= i, j &lt;= n - 1</code> and <code>i != j</code> team <code>i</code> is <strong>stronger</strong> than team <code>j</code> if <code>grid[i][j] == 1</code>, otherwise, team <code>j</code> is <strong>stronger</strong> than team <code>i</code>.</p>
<p>Team <code>a</code> will be the <strong>champion</strong> of the tournament if there is no team <code>b</code> that is stronger than team <code>a</code>.</p>
<p>Return <em>the team that will be the champion of the tournament.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> grid = [[0,1],[0,0]]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are two teams in this tournament.
grid[0][1] == 1 means that team 0 is stronger than team 1. So team 0 will be the champion.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> grid = [[0,0,1],[1,0,1],[0,0,0]]
<strong>Output:</strong> 1
<strong>Explanation:</strong> There are three teams in this tournament.
grid[1][0] == 1 means that team 1 is stronger than team 0.
grid[1][2] == 1 means that team 1 is stronger than team 2.
So team 1 will be the champion.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>n == grid.length</code></li>
<li><code>n == grid[i].length</code></li>
<li><code>2 &lt;= n &lt;= 100</code></li>
<li><code>grid[i][j]</code> is either <code>0</code> or <code>1</code>.</li>
<li>For all <code>i grid[i][i]</code> is <code>0.</code></li>
<li>For all <code>i, j</code> that <code>i != j</code>, <code>grid[i][j] != grid[j][i]</code>.</li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code> and team <code>b</code> is stronger than team <code>c</code>, then team <code>a</code> is stronger than team <code>c</code>.</li>
</ul>

View File

@ -0,0 +1,51 @@
<p>There are <code>n</code> teams numbered from <code>0</code> to <code>n - 1</code> in a tournament; each team is also a node in a <strong>DAG</strong>.</p>
<p>You are given the integer <code>n</code> and a <strong>0-indexed</strong> 2D integer array <code>edges</code> of length <code><font face="monospace">m</font></code> representing the <strong>DAG</strong>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>]</code> indicates that there is a directed edge from team <code>u<sub>i</sub></code> to team <code>v<sub>i</sub></code> in the graph.</p>
<p>A directed edge from <code>a</code> to <code>b</code> in the graph means that team <code>a</code> is <strong>stronger</strong> than team <code>b</code> and team <code>b</code> is <strong>weaker</strong> than team <code>a</code>.</p>
<p>Team <code>a</code> will be the <strong>champion</strong> of the tournament if there is no team <code>b</code> that is <strong>stronger</strong> than team <code>a</code>.</p>
<p>Return <em>the team that will be the <strong>champion</strong> of the tournament if there is a <strong>unique</strong> champion, otherwise, return </em><code>-1</code><em>.</em></p>
<p><strong>Notes</strong></p>
<ul>
<li>A <strong>cycle</strong> is a series of nodes <code>a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>, a<sub>n+1</sub></code> such that node <code>a<sub>1</sub></code> is the same node as node <code>a<sub>n+1</sub></code>, the nodes <code>a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub></code> are distinct, and there is a directed edge from the node <code>a<sub>i</sub></code> to node <code>a<sub>i+1</sub></code> for every <code>i</code> in the range <code>[1, n]</code>.</li>
<li>A <strong>DAG</strong> is a directed graph that does not have any <strong>cycle</strong>.</li>
</ul>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<p><img height="300" src="https://assets.leetcode.com/uploads/2023/10/19/graph-3.png" width="300" /></p>
<pre>
<strong>Input:</strong> n = 3, edges = [[0,1],[1,2]]
<strong>Output:</strong> 0
<strong>Explanation: </strong>Team 1 is weaker than team 0. Team 2 is weaker than team 1. So the champion is team 0.
</pre>
<p><strong class="example">Example 2:</strong></p>
<p><img height="300" src="https://assets.leetcode.com/uploads/2023/10/19/graph-4.png" width="300" /></p>
<pre>
<strong>Input:</strong> n = 4, edges = [[0,2],[1,3],[1,2]]
<strong>Output:</strong> -1
<strong>Explanation:</strong> Team 2 is weaker than team 0 and team 1. Team 3 is weaker than team 1. But team 1 and team 0 are not weaker than any other teams. So the answer is -1.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 100</code></li>
<li><code>m == edges.length</code></li>
<li><code>0 &lt;= m &lt;= n * (n - 1) / 2</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>0 &lt;= edge[i][j] &lt;= n - 1</code></li>
<li><code>edges[i][0] != edges[i][1]</code></li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code>, team <code>b</code> is not stronger than team <code>a</code>.</li>
<li>The input is generated such that if team <code>a</code> is stronger than team <code>b</code> and team <code>b</code> is stronger than team <code>c</code>, then team <code>a</code> is stronger than team <code>c</code>.</li>
</ul>

View File

@ -0,0 +1,52 @@
<p>You are given a 2D <strong>0-indexed</strong> array of strings, <code>access_times</code>, with size <code>n</code>. For each <code>i</code> where <code>0 &lt;= i &lt;= n - 1</code>, <code>access_times[i][0]</code> represents the name of an employee, and <code>access_times[i][1]</code> represents the access time of that employee. All entries in <code>access_times</code> are within the same day.</p>
<p>The access time is represented as <strong>four digits</strong> using a <strong>24-hour</strong> time format, for example, <code>&quot;0800&quot;</code> or <code>&quot;2250&quot;</code>.</p>
<p>An employee is said to be <strong>high-access</strong> if he has accessed the system <strong>three or more</strong> times within a <strong>one-hour period</strong>.</p>
<p>Times with exactly one hour of difference are <strong>not</strong> considered part of the same one-hour period. For example, <code>&quot;0815&quot;</code> and <code>&quot;0915&quot;</code> are not part of the same one-hour period.</p>
<p>Access times at the start and end of the day are <strong>not</strong> counted within the same one-hour period. For example, <code>&quot;0005&quot;</code> and <code>&quot;2350&quot;</code> are not part of the same one-hour period.</p>
<p>Return <em>a list that contains the names of <strong>high-access</strong> employees with any order you want.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;a&quot;,&quot;0549&quot;],[&quot;b&quot;,&quot;0457&quot;],[&quot;a&quot;,&quot;0532&quot;],[&quot;a&quot;,&quot;0621&quot;],[&quot;b&quot;,&quot;0540&quot;]]
<strong>Output:</strong> [&quot;a&quot;]
<strong>Explanation:</strong> &quot;a&quot; has three access times in the one-hour period of [05:32, 06:31] which are 05:32, 05:49, and 06:21.
But &quot;b&quot; does not have more than two access times at all.
So the answer is [&quot;a&quot;].</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;d&quot;,&quot;0002&quot;],[&quot;c&quot;,&quot;0808&quot;],[&quot;c&quot;,&quot;0829&quot;],[&quot;e&quot;,&quot;0215&quot;],[&quot;d&quot;,&quot;1508&quot;],[&quot;d&quot;,&quot;1444&quot;],[&quot;d&quot;,&quot;1410&quot;],[&quot;c&quot;,&quot;0809&quot;]]
<strong>Output:</strong> [&quot;c&quot;,&quot;d&quot;]
<strong>Explanation:</strong> &quot;c&quot; has three access times in the one-hour period of [08:08, 09:07] which are 08:08, 08:09, and 08:29.
&quot;d&quot; has also three access times in the one-hour period of [14:10, 15:09] which are 14:10, 14:44, and 15:08.
However, &quot;e&quot; has just one access time, so it can not be in the answer and the final answer is [&quot;c&quot;,&quot;d&quot;].</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> access_times = [[&quot;cd&quot;,&quot;1025&quot;],[&quot;ab&quot;,&quot;1025&quot;],[&quot;cd&quot;,&quot;1046&quot;],[&quot;cd&quot;,&quot;1055&quot;],[&quot;ab&quot;,&quot;1124&quot;],[&quot;ab&quot;,&quot;1120&quot;]]
<strong>Output:</strong> [&quot;ab&quot;,&quot;cd&quot;]
<strong>Explanation:</strong> &quot;ab&quot; has three access times in the one-hour period of [10:25, 11:24] which are 10:25, 11:20, and 11:24.
&quot;cd&quot; has also three access times in the one-hour period of [10:25, 11:24] which are 10:25, 10:46, and 10:55.
So the answer is [&quot;ab&quot;,&quot;cd&quot;].</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= access_times.length &lt;= 100</code></li>
<li><code>access_times[i].length == 2</code></li>
<li><code>1 &lt;= access_times[i][0].length &lt;= 10</code></li>
<li><code>access_times[i][0]</code> consists only of English small letters.</li>
<li><code>access_times[i][1].length == 4</code></li>
<li><code>access_times[i][1]</code> is in 24-hour time format.</li>
<li><code>access_times[i][1]</code> consists only of <code>&#39;0&#39;</code> to <code>&#39;9&#39;</code>.</li>
</ul>

View File

@ -0,0 +1,54 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>.</p>
<p>A <strong>subsequence</strong> of <code>nums</code> having length <code>k</code> and consisting of <strong>indices</strong> <code>i<sub>0</sub>&nbsp;&lt;&nbsp;i<sub>1</sub> &lt;&nbsp;... &lt; i<sub>k-1</sub></code> is <strong>balanced</strong> if the following holds:</p>
<ul>
<li><code>nums[i<sub>j</sub>] - nums[i<sub>j-1</sub>] &gt;= i<sub>j</sub> - i<sub>j-1</sub></code>, for every <code>j</code> in the range <code>[1, k - 1]</code>.</li>
</ul>
<p>A <strong>subsequence</strong> of <code>nums</code> having length <code>1</code> is considered balanced.</p>
<p>Return <em>an integer denoting the <strong>maximum</strong> possible <strong>sum of elements</strong> in a <strong>balanced</strong> subsequence of </em><code>nums</code>.</p>
<p>A <strong>subsequence</strong> of an array is a new <strong>non-empty</strong> array that is formed from the original array by deleting some (<strong>possibly none</strong>) of the elements without disturbing the relative positions of the remaining elements.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [3,3,5,6]
<strong>Output:</strong> 14
<strong>Explanation:</strong> In this example, the subsequence [3,5,6] consisting of indices 0, 2, and 3 can be selected.
nums[2] - nums[0] &gt;= 2 - 0.
nums[3] - nums[2] &gt;= 3 - 2.
Hence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
The subsequence consisting of indices 1, 2, and 3 is also valid.
It can be shown that it is not possible to get a balanced subsequence with a sum greater than 14.</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,-1,-3,8]
<strong>Output:</strong> 13
<strong>Explanation:</strong> In this example, the subsequence [5,8] consisting of indices 0 and 3 can be selected.
nums[3] - nums[0] &gt;= 3 - 0.
Hence, it is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
It can be shown that it is not possible to get a balanced subsequence with a sum greater than 13.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [-2,-1]
<strong>Output:</strong> -1
<strong>Explanation:</strong> In this example, the subsequence [-1] can be selected.
It is a balanced subsequence, and its sum is the maximum among the balanced subsequences of nums.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> &lt;= nums[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,52 @@
<p>There is an undirected tree with <code>n</code> nodes labeled from <code>0</code> to <code>n - 1</code>, and rooted at node <code>0</code>. You are given&nbsp;a 2D integer array <code>edges</code> of length <code>n - 1</code>, where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> indicates that there is an edge between nodes <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code> in the tree.</p>
<p>You are also given a <strong>0-indexed</strong> integer array <code>values</code> of length <code>n</code>, where <code>values[i]</code> is the <strong>value</strong> associated with the <code>i<sup>th</sup></code> node.</p>
<p>You start with a score of <code>0</code>. In one operation, you can:</p>
<ul>
<li>Pick any node <code>i</code>.</li>
<li>Add <code>values[i]</code> to your score.</li>
<li>Set <code>values[i]</code> to <code>0</code>.</li>
</ul>
<p>A tree is <strong>healthy</strong> if the sum of values on the path from the root to any leaf node is different than zero.</p>
<p>Return <em>the <strong>maximum score</strong> you can obtain after performing these operations on the tree any number of times so that it remains <strong>healthy</strong>.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2023/10/11/graph-13-1.png" style="width: 515px; height: 443px;" />
<pre>
<strong>Input:</strong> edges = [[0,1],[0,2],[0,3],[2,4],[4,5]], values = [5,2,5,2,1,1]
<strong>Output:</strong> 11
<strong>Explanation:</strong> We can choose nodes 1, 2, 3, 4, and 5. The value of the root is non-zero. Hence, the sum of values on the path from the root to any leaf is different than zero. Therefore, the tree is healthy and the score is values[1] + values[2] + values[3] + values[4] + values[5] = 11.
It can be shown that 11 is the maximum score obtainable after any number of operations on the tree.
</pre>
<p><strong class="example">Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2023/10/11/graph-14-2.png" style="width: 522px; height: 245px;" />
<pre>
<strong>Input:</strong> edges = [[0,1],[0,2],[1,3],[1,4],[2,5],[2,6]], values = [20,10,9,7,4,3,5]
<strong>Output:</strong> 40
<strong>Explanation:</strong> We can choose nodes 0, 2, 3, and 4.
- The sum of values on the path from 0 to 4 is equal to 10.
- The sum of values on the path from 0 to 3 is equal to 10.
- The sum of values on the path from 0 to 5 is equal to 3.
- The sum of values on the path from 0 to 6 is equal to 5.
Therefore, the tree is healthy and the score is values[0] + values[2] + values[3] + values[4] = 40.
It can be shown that 40 is the maximum score obtainable after any number of operations on the tree.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>2 &lt;= n &lt;= 2 * 10<sup>4</sup></code></li>
<li><code>edges.length == n - 1</code></li>
<li><code>edges[i].length == 2</code></li>
<li><code>0 &lt;= a<sub>i</sub>, b<sub>i</sub> &lt; n</code></li>
<li><code>values.length == n</code></li>
<li><code>1 &lt;= values[i] &lt;= 10<sup>9</sup></code></li>
<li>The input is generated such that <code>edges</code> represents a valid tree.</li>
</ul>

View File

@ -0,0 +1,60 @@
<p>You are given a <strong>0-indexed</strong> <code>m * n</code> integer matrix <code>values</code>, representing the values of <code>m * n</code> different items in <code>m</code> different shops. Each shop has <code>n</code> items where the <code>j<sup>th</sup></code> item in the <code>i<sup>th</sup></code> shop has a value of <code>values[i][j]</code>. Additionally, the items in the <code>i<sup>th</sup></code> shop are sorted in non-increasing order of value. That is, <code>values[i][j] &gt;= values[i][j + 1]</code> for all <code>0 &lt;= j &lt; n - 1</code>.</p>
<p>On each day, you would like to buy a single item from one of the shops. Specifically, On the <code>d<sup>th</sup></code> day you can:</p>
<ul>
<li>Pick any shop <code>i</code>.</li>
<li>Buy the rightmost available item <code>j</code> for the price of <code>values[i][j] * d</code>. That is, find the greatest index <code>j</code> such that item <code>j</code> was never bought before, and buy it for the price of <code>values[i][j] * d</code>.</li>
</ul>
<p><strong>Note</strong> that all items are pairwise different. For example, if you have bought item <code>0</code> from shop <code>1</code>, you can still buy item <code>0</code> from any other shop.</p>
<p>Return <em>the <strong>maximum amount of money that can be spent</strong> on buying all </em> <code>m * n</code> <em>products</em>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> values = [[8,5,2],[6,4,1],[9,7,3]]
<strong>Output:</strong> 285
<strong>Explanation:</strong> On the first day, we buy product 2 from shop 1 for a price of values[1][2] * 1 = 1.
On the second day, we buy product 2 from shop 0 for a price of values[0][2] * 2 = 4.
On the third day, we buy product 2 from shop 2 for a price of values[2][2] * 3 = 9.
On the fourth day, we buy product 1 from shop 1 for a price of values[1][1] * 4 = 16.
On the fifth day, we buy product 1 from shop 0 for a price of values[0][1] * 5 = 25.
On the sixth day, we buy product 0 from shop 1 for a price of values[1][0] * 6 = 36.
On the seventh day, we buy product 1 from shop 2 for a price of values[2][1] * 7 = 49.
On the eighth day, we buy product 0 from shop 0 for a price of values[0][0] * 8 = 64.
On the ninth day, we buy product 0 from shop 2 for a price of values[2][0] * 9 = 81.
Hence, our total spending is equal to 285.
It can be shown that 285 is the maximum amount of money that can be spent buying all m * n products.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> values = [[10,8,6,4,2],[9,7,5,3,2]]
<strong>Output:</strong> 386
<strong>Explanation:</strong> On the first day, we buy product 4 from shop 0 for a price of values[0][4] * 1 = 2.
On the second day, we buy product 4 from shop 1 for a price of values[1][4] * 2 = 4.
On the third day, we buy product 3 from shop 1 for a price of values[1][3] * 3 = 9.
On the fourth day, we buy product 3 from shop 0 for a price of values[0][3] * 4 = 16.
On the fifth day, we buy product 2 from shop 1 for a price of values[1][2] * 5 = 25.
On the sixth day, we buy product 2 from shop 0 for a price of values[0][2] * 6 = 36.
On the seventh day, we buy product 1 from shop 1 for a price of values[1][1] * 7 = 49.
On the eighth day, we buy product 1 from shop 0 for a price of values[0][1] * 8 = 64
On the ninth day, we buy product 0 from shop 1 for a price of values[1][0] * 9 = 81.
On the tenth day, we buy product 0 from shop 0 for a price of values[0][0] * 10 = 100.
Hence, our total spending is equal to 386.
It can be shown that 386 is the maximum amount of money that can be spent buying all m * n products.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= m == values.length &lt;= 10</code></li>
<li><code>1 &lt;= n == values[i].length &lt;= 10<sup>4</sup></code></li>
<li><code>1 &lt;= values[i][j] &lt;= 10<sup>6</sup></code></li>
<li><code>values[i]</code> are sorted in non-increasing order.</li>
</ul>

View File

@ -0,0 +1,47 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>. A pair of integers <code>x</code> and <code>y</code> is called a <strong>strong</strong> pair if it satisfies the condition:</p>
<ul>
<li><code>|x - y| &lt;= min(x, y)</code></li>
</ul>
<p>You need to select two integers from <code>nums</code> such that they form a strong pair and their bitwise <code>XOR</code> is the <strong>maximum</strong> among all strong pairs in the array.</p>
<p>Return <em>the <strong>maximum</strong> </em><code>XOR</code><em> value out of all possible strong pairs in the array</em> <code>nums</code>.</p>
<p><strong>Note</strong> that you can pick the same integer twice to form a pair.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 11 strong pairs in the array <code>nums</code>: (1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) and (5, 5).
The maximum XOR possible from these pairs is 3 XOR 4 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [10,100]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are 2 strong pairs in the array <code>nums</code>: (10, 10) and (100, 100).
The maximum XOR possible from these pairs is 10 XOR 10 = 0 since the pair (100, 100) also gives 100 XOR 100 = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [5,6,25,30]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 6 strong pairs in the array <code>nums</code>: (5, 5), (5, 6), (6, 6), (25, 25), (25, 30) and (30, 30).
The maximum XOR possible from these pairs is 25 XOR 30 = 7 since the only other non-zero XOR value is 5 XOR 6 = 3.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 50</code></li>
<li><code>1 &lt;= nums[i] &lt;= 100</code></li>
</ul>

View File

@ -0,0 +1,47 @@
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>. A pair of integers <code>x</code> and <code>y</code> is called a <strong>strong</strong> pair if it satisfies the condition:</p>
<ul>
<li><code>|x - y| &lt;= min(x, y)</code></li>
</ul>
<p>You need to select two integers from <code>nums</code> such that they form a strong pair and their bitwise <code>XOR</code> is the <strong>maximum</strong> among all strong pairs in the array.</p>
<p>Return <em>the <strong>maximum</strong> </em><code>XOR</code><em> value out of all possible strong pairs in the array</em> <code>nums</code>.</p>
<p><strong>Note</strong> that you can pick the same integer twice to form a pair.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums = [1,2,3,4,5]
<strong>Output:</strong> 7
<strong>Explanation:</strong> There are 11 strong pairs in the array <code>nums</code>: (1, 1), (1, 2), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (3, 5), (4, 4), (4, 5) and (5, 5).
The maximum XOR possible from these pairs is 3 XOR 4 = 7.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums = [10,100]
<strong>Output:</strong> 0
<strong>Explanation:</strong> There are 2 strong pairs in the array nums: (10, 10) and (100, 100).
The maximum XOR possible from these pairs is 10 XOR 10 = 0 since the pair (100, 100) also gives 100 XOR 100 = 0.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums = [500,520,2500,3000]
<strong>Output:</strong> 1020
<strong>Explanation:</strong> There are 6 strong pairs in the array nums: (500, 500), (500, 520), (520, 520), (2500, 2500), (2500, 3000) and (3000, 3000).
The maximum XOR possible from these pairs is 500 XOR 520 = 1020 since the only other non-zero XOR value is 2500 XOR 3000 = 636.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 5 * 10<sup>4</sup></code></li>
<li><code>1 &lt;= nums[i] &lt;= 2<sup>20</sup> - 1</code></li>
</ul>

View File

@ -0,0 +1,60 @@
<p>You are given two <strong>0-indexed</strong> integer arrays, <code>nums1</code> and <code>nums2</code>, both having length <code>n</code>.</p>
<p>You are allowed to perform a series of <strong>operations</strong> (<strong>possibly none</strong>).</p>
<p>In an operation, you select an index <code>i</code> in the range <code>[0, n - 1]</code> and <strong>swap</strong> the values of <code>nums1[i]</code> and <code>nums2[i]</code>.</p>
<p>Your task is to find the <strong>minimum</strong> number of operations required to satisfy the following conditions:</p>
<ul>
<li><code>nums1[n - 1]</code> is equal to the <strong>maximum value</strong> among all elements of <code>nums1</code>, i.e., <code>nums1[n - 1] = max(nums1[0], nums1[1], ..., nums1[n - 1])</code>.</li>
<li><code>nums2[n - 1]</code> is equal to the <strong>maximum</strong> <strong>value</strong> among all elements of <code>nums2</code>, i.e., <code>nums2[n - 1] = max(nums2[0], nums2[1], ..., nums2[n - 1])</code>.</li>
</ul>
<p>Return <em>an integer denoting the <strong>minimum</strong> number of operations needed to meet <strong>both</strong> conditions</em>, <em>or </em><code>-1</code><em> if it is <strong>impossible</strong> to satisfy both conditions.</em></p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [1,2,7], nums2 = [4,5,3]
<strong>Output:</strong> 1
<strong>Explanation:</strong> In this example, an operation can be performed using index i = 2.
When nums1[2] and nums2[2] are swapped, nums1 becomes [1,2,3] and nums2 becomes [4,5,7].
Both conditions are now satisfied.
It can be shown that the minimum number of operations needed to be performed is 1.
So, the answer is 1.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [2,3,4,5,9], nums2 = [8,8,4,4,4]
<strong>Output:</strong> 2
<strong>Explanation:</strong> In this example, the following operations can be performed:
First operation using index i = 4.
When nums1[4] and nums2[4] are swapped, nums1 becomes [2,3,4,5,4], and nums2 becomes [8,8,4,4,9].
Another operation using index i = 3.
When nums1[3] and nums2[3] are swapped, nums1 becomes [2,3,4,4,4], and nums2 becomes [8,8,4,5,9].
Both conditions are now satisfied.
It can be shown that the minimum number of operations needed to be performed is 2.
So, the answer is 2.
</pre>
<p><strong class="example">Example 3:</strong></p>
<pre>
<strong>Input:</strong> nums1 = [1,5,4], nums2 = [2,5,3]
<strong>Output:</strong> -1
<strong>Explanation:</strong> In this example, it is not possible to satisfy both conditions.
So, the answer is -1.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n == nums1.length == nums2.length &lt;= 1000</code></li>
<li><code>1 &lt;= nums1[i] &lt;= 10<sup>9</sup></code></li>
<li><code>1 &lt;= nums2[i] &lt;= 10<sup>9</sup></code></li>
</ul>

View File

@ -0,0 +1,42 @@
<p>You are given an integer <code>n</code>.</p>
<p>A string <code>s</code> is called <strong>good </strong>if it contains only lowercase English characters <strong>and</strong> it is possible to rearrange the characters of <code>s</code> such that the new string contains <code>&quot;leet&quot;</code> as a <strong>substring</strong>.</p>
<p>For example:</p>
<ul>
<li>The string <code>&quot;lteer&quot;</code> is good because we can rearrange it to form <code>&quot;leetr&quot;</code> .</li>
<li><code>&quot;letl&quot;</code> is not good because we cannot rearrange it to contain <code>&quot;leet&quot;</code> as a substring.</li>
</ul>
<p>Return <em>the <strong>total</strong> number of good strings of length </em><code>n</code>.</p>
<p>Since the answer may be large, return it <strong>modulo </strong><code>10<sup>9</sup> + 7</code>.</p>
<p>A <strong>substring</strong> is a contiguous sequence of characters within a string.</p>
<div class="notranslate" style="all: initial;">&nbsp;</div>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<pre>
<strong>Input:</strong> n = 4
<strong>Output:</strong> 12
<strong>Explanation:</strong> The 12 strings which can be rearranged to have &quot;leet&quot; as a substring are: &quot;eelt&quot;, &quot;eetl&quot;, &quot;elet&quot;, &quot;elte&quot;, &quot;etel&quot;, &quot;etle&quot;, &quot;leet&quot;, &quot;lete&quot;, &quot;ltee&quot;, &quot;teel&quot;, &quot;tele&quot;, and &quot;tlee&quot;.
</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 10
<strong>Output:</strong> 83943898
<strong>Explanation:</strong> The number of strings with length 10 which can be rearranged to have &quot;leet&quot; as a substring is 526083947580. Hence the answer is 526083947580 % (10<sup>9</sup> + 7) = 83943898.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 10<sup>5</sup></code></li>
</ul>