1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-26 02:00:27 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/originData/reshape-data-concatenate.json

55 lines
6.6 KiB
JSON
Raw Normal View History

2023-10-05 03:40:12 +08:00
{
"data": {
"question": {
"questionId": "3064",
2023-12-09 18:42:21 +08:00
"questionFrontendId": "2888",
"categoryTitle": "pandas",
2023-10-05 03:40:12 +08:00
"boundTopicId": 2453767,
"title": "Reshape Data: Concatenate",
"titleSlug": "reshape-data-concatenate",
"content": "<pre>\nDataFrame <code>df1</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n\nDataFrame <code>df2</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n\n</pre>\n\n<p>Write a solution to concatenate these two DataFrames <strong>vertically</strong> into one DataFrame.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:\ndf1</strong>\n+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 1 | Mason | 8 |\n| 2 | Ava | 6 |\n| 3 | Taylor | 15 |\n| 4 | Georgia | 17 |\n+------------+---------+-----+\n<strong>df2\n</strong>+------------+------+-----+\n| student_id | name | age |\n+------------+------+-----+\n| 5 | Leo | 7 |\n| 6 | Alex | 7 |\n+------------+------+-----+\n<strong>Output:</strong>\n+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 1 | Mason | 8 |\n| 2 | Ava | 6 |\n| 3 | Taylor | 15 |\n| 4 | Georgia | 17 |\n| 5 | Leo | 7 |\n| 6 | Alex | 7 |\n+------------+---------+-----+\n<strong>Explanation:\n</strong>The two DataFramess are stacked vertically, and their rows are combined.</pre>\n",
2023-12-09 18:42:21 +08:00
"translatedTitle": "重塑数据:连结",
"translatedContent": "<pre>\nDataFrame <code>df1</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n\nDataFrame <code>df2</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| student_id | int |\n| name | object |\n| age | int |\n+-------------+--------+\n\n</pre>\n\n<p>编写一个解决方案,将两个&nbsp;DataFrames <b>垂直 </b>连接成一个&nbsp;DataFrame。</p>\n\n<p>结果格式如下示例所示。</p>\n\n<p>&nbsp;</p>\n\n<p><strong class=\"example\">示例 1</strong></p>\n\n<pre>\n<strong>输入:\ndf1</strong>\n+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 1 | Mason | 8 |\n| 2 | Ava | 6 |\n| 3 | Taylor | 15 |\n| 4 | Georgia | 17 |\n+------------+---------+-----+\n<strong>df2\n</strong>+------------+------+-----+\n| student_id | name | age |\n+------------+------+-----+\n| 5 | Leo | 7 |\n| 6 | Alex | 7 |\n+------------+------+-----+\n<b>输出:</b>\n+------------+---------+-----+\n| student_id | name | age |\n+------------+---------+-----+\n| 1 | Mason | 8 |\n| 2 | Ava | 6 |\n| 3 | Taylor | 15 |\n| 4 | Georgia | 17 |\n| 5 | Leo | 7 |\n| 6 | Alex | 7 |\n+------------+---------+-----+\n<strong>解释:\n</strong>两个 DataFrame 被垂直堆叠,它们的行被合并。</pre>\n",
2023-10-05 03:40:12 +08:00
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 0,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef concatenateTables(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
}
],
2023-12-09 18:42:21 +08:00
"stats": "{\"totalAccepted\": \"1.3K\", \"totalSubmission\": \"1.5K\", \"totalAcceptedRaw\": 1315, \"totalSubmissionRaw\": 1522, \"acRate\": \"86.4%\"}",
2023-10-05 03:40:12 +08:00
"hints": [
"Consider using a built-in function in pandas library with the appropriate axis argument."
],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"df1\":[\"student_id\",\"name\",\"age\"],\"df2\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"df1\":[[1,\"Mason\",8],[2,\"Ava\",6],[3,\"Taylor\",15],[4,\"Georgia\",17]],\"df2\":[[5,\"Leo\",7],[6,\"Alex\",7]]}}",
"metaData": "{\n \"pythondata\": [\n \"df1 = pd.DataFrame([], columns=['student_id', 'name', 'age']).astype({'student_id':'Int64', 'name':'object', 'age':'Int64'})\",\n \"df2 = pd.DataFrame([], columns=['student_id', 'name', 'age']).astype({'student_id':'Int64', 'name':'object', 'age':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"concatenateTables\",\n \"languages\": [\n \"pythondata\"\n ]\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"envInfo": "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"df1\":[\"student_id\",\"name\",\"age\"],\"df2\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"df1\":[[1,\"Mason\",8],[2,\"Ava\",6],[3,\"Taylor\",15],[4,\"Georgia\",17]],\"df2\":[[5,\"Leo\",7],[6,\"Alex\",7]]}}",
"__typename": "QuestionNode"
}
}
}