{ "data": { "question": { "questionId": "3064", "questionFrontendId": "2888", "categoryTitle": "pandas", "boundTopicId": 2453767, "title": "Reshape Data: Concatenate", "titleSlug": "reshape-data-concatenate", "content": "
\nDataFrame df1\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| student_id  | int    |\n| name        | object |\n| age         | int    |\n+-------------+--------+\n\nDataFrame df2\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| student_id  | int    |\n| name        | object |\n| age         | int    |\n+-------------+--------+\n\n
\n\n

Write a solution to concatenate these two DataFrames vertically into one DataFrame.

\n\n

The result format is in the following example.

\n\n

 

\n

Example 1:

\n\n
\nInput:\ndf1\n+------------+---------+-----+\n| student_id | name    | age |\n+------------+---------+-----+\n| 1          | Mason   | 8   |\n| 2          | Ava     | 6   |\n| 3          | Taylor  | 15  |\n| 4          | Georgia | 17  |\n+------------+---------+-----+\ndf2\n+------------+------+-----+\n| student_id | name | age |\n+------------+------+-----+\n| 5          | Leo  | 7   |\n| 6          | Alex | 7   |\n+------------+------+-----+\nOutput:\n+------------+---------+-----+\n| student_id | name    | age |\n+------------+---------+-----+\n| 1          | Mason   | 8   |\n| 2          | Ava     | 6   |\n| 3          | Taylor  | 15  |\n| 4          | Georgia | 17  |\n| 5          | Leo     | 7   |\n| 6          | Alex    | 7   |\n+------------+---------+-----+\nExplanation:\nThe two DataFramess are stacked vertically, and their rows are combined.
\n", "translatedTitle": "重塑数据:连结", "translatedContent": "
\nDataFrame df1\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| student_id  | int    |\n| name        | object |\n| age         | int    |\n+-------------+--------+\n\nDataFrame df2\n+-------------+--------+\n| Column Name | Type   |\n+-------------+--------+\n| student_id  | int    |\n| name        | object |\n| age         | int    |\n+-------------+--------+\n\n
\n\n

编写一个解决方案,将两个 DataFrames 垂直 连接成一个 DataFrame。

\n\n

结果格式如下示例所示。

\n\n

 

\n\n

示例 1:

\n\n
\n输入:\ndf1\n+------------+---------+-----+\n| student_id | name    | age |\n+------------+---------+-----+\n| 1          | Mason   | 8   |\n| 2          | Ava     | 6   |\n| 3          | Taylor  | 15  |\n| 4          | Georgia | 17  |\n+------------+---------+-----+\ndf2\n+------------+------+-----+\n| student_id | name | age |\n+------------+------+-----+\n| 5          | Leo  | 7   |\n| 6          | Alex | 7   |\n+------------+------+-----+\n输出:\n+------------+---------+-----+\n| student_id | name    | age |\n+------------+---------+-----+\n| 1          | Mason   | 8   |\n| 2          | Ava     | 6   |\n| 3          | Taylor  | 15  |\n| 4          | Georgia | 17  |\n| 5          | Leo     | 7   |\n| 6          | Alex    | 7   |\n+------------+---------+-----+\n解释:\n两个 DataFrame 被垂直堆叠,它们的行被合并。
\n", "isPaidOnly": false, "difficulty": "Easy", "likes": 0, "dislikes": 0, "isLiked": null, "similarQuestions": "[]", "contributors": [], "langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}", "topicTags": [], "companyTagStats": null, "codeSnippets": [ { "lang": "Pandas", "langSlug": "pythondata", "code": "import pandas as pd\n\ndef concatenateTables(df1: pd.DataFrame, df2: pd.DataFrame) -> pd.DataFrame:\n ", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"1.3K\", \"totalSubmission\": \"1.5K\", \"totalAcceptedRaw\": 1315, \"totalSubmissionRaw\": 1522, \"acRate\": \"86.4%\"}", "hints": [ "Consider using a built-in function in pandas library with the appropriate axis argument." ], "solution": null, "status": null, "sampleTestCase": "{\"headers\":{\"df1\":[\"student_id\",\"name\",\"age\"],\"df2\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"df1\":[[1,\"Mason\",8],[2,\"Ava\",6],[3,\"Taylor\",15],[4,\"Georgia\",17]],\"df2\":[[5,\"Leo\",7],[6,\"Alex\",7]]}}", "metaData": "{\n \"pythondata\": [\n \"df1 = pd.DataFrame([], columns=['student_id', 'name', 'age']).astype({'student_id':'Int64', 'name':'object', 'age':'Int64'})\",\n \"df2 = pd.DataFrame([], columns=['student_id', 'name', 'age']).astype({'student_id':'Int64', 'name':'object', 'age':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"concatenateTables\",\n \"languages\": [\n \"pythondata\"\n ]\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "envInfo": "{\"pythondata\":[\"Pandas\",\"

Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}", "book": null, "isSubscribed": false, "isDailyQuestion": false, "dailyRecordStatus": null, "editorType": "CKEDITOR", "ugcQuestionId": null, "style": "LEETCODE", "exampleTestcases": "{\"headers\":{\"df1\":[\"student_id\",\"name\",\"age\"],\"df2\":[\"student_id\",\"name\",\"age\"]},\"rows\":{\"df1\":[[1,\"Mason\",8],[2,\"Ava\",6],[3,\"Taylor\",15],[4,\"Georgia\",17]],\"df2\":[[5,\"Leo\",7],[6,\"Alex\",7]]}}", "__typename": "QuestionNode" } } }