"content":"<p>You are given an integer array <code>nums</code> of <code>2 * n</code> integers. You need to partition <code>nums</code> into <strong>two</strong> arrays of length <code>n</code> to <strong>minimize the absolute difference</strong> of the <strong>sums</strong> of the arrays. To partition <code>nums</code>, put each element of <code>nums</code> into <strong>one</strong> of the two arrays.</p>\n\n<p>Return <em>the <strong>minimum</strong> possible absolute difference</em>.</p>\n\n<p> </p>\n<p><strong>Example 1:</strong></p>\n<img alt=\"example-1\" src=\"https://assets.leetcode.com/uploads/2021/10/02/ex1.png\" style=\"width: 240px; height: 106px;\" />\n<pre>\n<strong>Input:</strong> nums = [3,9,7,3]\n<strong>Output:</strong> 2\n<strong>Explanation:</strong> One optimal partition is: [3,9] and [7,3].\nThe absolute difference between the sums of the arrays is abs((3 + 9) - (7 + 3)) = 2.\n</pre>\n\n<p><strong>Example 2:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [-36,36]\n<strong>Output:</strong> 72\n<strong>Explanation:</strong> One optimal partition is: [-36] and [36].\nThe absolute difference between the sums of the arrays is abs((-36) - (36)) = 72.\n</pre>\n\n<p><strong>Example 3:</strong></p>\n<img alt=\"example-3\" src=\"https://assets.leetcode.com/uploads/2021/10/02/ex3.png\" style=\"width: 316px; height: 106px;\" />\n<pre>\n<strong>Input:</strong> nums = [2,-1,0,4,-2,-9]\n<strong>Output:</strong> 0\n<strong>Explanation:</strong> One optimal partition is: [2,4,-9] and [-1,0,-2].\nThe absolute difference between the sums of the arrays is abs((2 + 4 + -9) - (-1 + 0 + -2)) = 0.\n</pre>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>1 <= n <= 15</code></li>\n\t<li><code>nums.length == 2 * n</code></li>\n\t<li><code>-10<sup>7</sup> <= nums[i] <= 10<sup>7</sup></code></li>\n</ul>\n",
"The target sum for the two partitions is sum(nums) / 2.",
"Could you reduce the time complexity if you arbitrarily divide nums into two halves (two arrays)? Meet-in-the-Middle?",
"For both halves, pre-calculate a 2D array where the kth index will store all possible sum values if only k elements from this half are added.",
"For each sum of k elements in the first half, find the best sum of n-k elements in the second half such that the two sums add up to a value closest to the target sum from hint 1. These two subsets will form one array of the partition."
"envInfo":"{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 11 </code> using the latest C++ 17 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code> OpenJDK 17 </code>. Java 8 features such as lambda expressions and stream API can be used. </p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 8.2</code> using the gnu99 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O1</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://docs.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-9\\\" target=\\\"_blank\\\">C# 10 with .NET 6 runtime</a></p>\\r\\n\\r\\n<p>Your code is compiled with debug flag enabled (<code>/debug</code>).</p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 16.13.2</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use <a href=\\\"https://github.com/datastructures-js/priority-queue\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and <a href=\\\"https: