{ "data": { "question": { "questionId": "2162", "questionFrontendId": "2035", "boundTopicId": null, "title": "Partition Array Into Two Arrays to Minimize Sum Difference", "titleSlug": "partition-array-into-two-arrays-to-minimize-sum-difference", "content": "

You are given an integer array nums of 2 * n integers. You need to partition nums into two arrays of length n to minimize the absolute difference of the sums of the arrays. To partition nums, put each element of nums into one of the two arrays.

\n\n

Return the minimum possible absolute difference.

\n\n

 

\n

Example 1:

\n\"example-1\"\n
\nInput: nums = [3,9,7,3]\nOutput: 2\nExplanation: One optimal partition is: [3,9] and [7,3].\nThe absolute difference between the sums of the arrays is abs((3 + 9) - (7 + 3)) = 2.\n
\n\n

Example 2:

\n\n
\nInput: nums = [-36,36]\nOutput: 72\nExplanation: One optimal partition is: [-36] and [36].\nThe absolute difference between the sums of the arrays is abs((-36) - (36)) = 72.\n
\n\n

Example 3:

\n\"example-3\"\n
\nInput: nums = [2,-1,0,4,-2,-9]\nOutput: 0\nExplanation: One optimal partition is: [2,4,-9] and [-1,0,-2].\nThe absolute difference between the sums of the arrays is abs((2 + 4 + -9) - (-1 + 0 + -2)) = 0.\n
\n\n

 

\n

Constraints:

\n\n\n", "translatedTitle": null, "translatedContent": null, "isPaidOnly": false, "difficulty": "Hard", "likes": 516, "dislikes": 31, "isLiked": null, "similarQuestions": "[{\"title\": \"Partition Equal Subset Sum\", \"titleSlug\": \"partition-equal-subset-sum\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Split Array With Same Average\", \"titleSlug\": \"split-array-with-same-average\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Tallest Billboard\", \"titleSlug\": \"tallest-billboard\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Last Stone Weight II\", \"titleSlug\": \"last-stone-weight-ii\", \"difficulty\": \"Medium\", \"translatedTitle\": null}, {\"title\": \"Closest Subsequence Sum\", \"titleSlug\": \"closest-subsequence-sum\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]", "exampleTestcases": "[3,9,7,3]\n[-36,36]\n[2,-1,0,4,-2,-9]", "categoryTitle": "Algorithms", "contributors": [], "topicTags": [ { "name": "Array", "slug": "array", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Two Pointers", "slug": "two-pointers", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Binary Search", "slug": "binary-search", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Dynamic Programming", "slug": "dynamic-programming", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Bit Manipulation", "slug": "bit-manipulation", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Ordered Set", "slug": "ordered-set", "translatedName": null, "__typename": "TopicTagNode" }, { "name": "Bitmask", "slug": "bitmask", "translatedName": null, "__typename": "TopicTagNode" } ], "companyTagStats": null, "codeSnippets": [ { "lang": "C++", "langSlug": "cpp", "code": "class Solution {\npublic:\n int minimumDifference(vector& nums) {\n \n }\n};", "__typename": "CodeSnippetNode" }, { "lang": "Java", "langSlug": "java", "code": "class Solution {\n public int minimumDifference(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Python", "langSlug": "python", "code": "class Solution(object):\n def minimumDifference(self, nums):\n \"\"\"\n :type nums: List[int]\n :rtype: int\n \"\"\"\n ", "__typename": "CodeSnippetNode" }, { "lang": "Python3", "langSlug": "python3", "code": "class Solution:\n def minimumDifference(self, nums: List[int]) -> int:\n ", "__typename": "CodeSnippetNode" }, { "lang": "C", "langSlug": "c", "code": "\n\nint minimumDifference(int* nums, int numsSize){\n\n}", "__typename": "CodeSnippetNode" }, { "lang": "C#", "langSlug": "csharp", "code": "public class Solution {\n public int MinimumDifference(int[] nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "JavaScript", "langSlug": "javascript", "code": "/**\n * @param {number[]} nums\n * @return {number}\n */\nvar minimumDifference = function(nums) {\n \n};", "__typename": "CodeSnippetNode" }, { "lang": "Ruby", "langSlug": "ruby", "code": "# @param {Integer[]} nums\n# @return {Integer}\ndef minimum_difference(nums)\n \nend", "__typename": "CodeSnippetNode" }, { "lang": "Swift", "langSlug": "swift", "code": "class Solution {\n func minimumDifference(_ nums: [Int]) -> Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Go", "langSlug": "golang", "code": "func minimumDifference(nums []int) int {\n \n}", "__typename": "CodeSnippetNode" }, { "lang": "Scala", "langSlug": "scala", "code": "object Solution {\n def minimumDifference(nums: Array[Int]): Int = {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Kotlin", "langSlug": "kotlin", "code": "class Solution {\n fun minimumDifference(nums: IntArray): Int {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "Rust", "langSlug": "rust", "code": "impl Solution {\n pub fn minimum_difference(nums: Vec) -> i32 {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "PHP", "langSlug": "php", "code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @return Integer\n */\n function minimumDifference($nums) {\n \n }\n}", "__typename": "CodeSnippetNode" }, { "lang": "TypeScript", "langSlug": "typescript", "code": "function minimumDifference(nums: number[]): number {\n\n};", "__typename": "CodeSnippetNode" }, { "lang": "Racket", "langSlug": "racket", "code": "(define/contract (minimum-difference nums)\n (-> (listof exact-integer?) exact-integer?)\n\n )", "__typename": "CodeSnippetNode" }, { "lang": "Erlang", "langSlug": "erlang", "code": "-spec minimum_difference(Nums :: [integer()]) -> integer().\nminimum_difference(Nums) ->\n .", "__typename": "CodeSnippetNode" }, { "lang": "Elixir", "langSlug": "elixir", "code": "defmodule Solution do\n @spec minimum_difference(nums :: [integer]) :: integer\n def minimum_difference(nums) do\n\n end\nend", "__typename": "CodeSnippetNode" } ], "stats": "{\"totalAccepted\": \"5K\", \"totalSubmission\": \"22.4K\", \"totalAcceptedRaw\": 4987, \"totalSubmissionRaw\": 22388, \"acRate\": \"22.3%\"}", "hints": [ "The target sum for the two partitions is sum(nums) / 2.", "Could you reduce the time complexity if you arbitrarily divide nums into two halves (two arrays)? Meet-in-the-Middle?", "For both halves, pre-calculate a 2D array where the kth index will store all possible sum values if only k elements from this half are added.", "For each sum of k elements in the first half, find the best sum of n-k elements in the second half such that the two sums add up to a value closest to the target sum from hint 1. These two subsets will form one array of the partition." ], "solution": null, "status": null, "sampleTestCase": "[3,9,7,3]", "metaData": "{\n \"name\": \"minimumDifference\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}", "judgerAvailable": true, "judgeType": "large", "mysqlSchemas": [], "enableRunCode": true, "enableTestMode": false, "enableDebugger": true, "envInfo": "{\"cpp\": [\"C++\", \"

Compiled with clang 11 using the latest C++ 17 standard.

\\r\\n\\r\\n

Your code is compiled with level two optimization (-O2). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\"], \"java\": [\"Java\", \"

OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n

Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.

\"], \"python\": [\"Python\", \"

Python 2.7.12.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\\r\\n\\r\\n

Note that Python 2.7 will not be maintained past 2020. For the latest Python, please choose Python3 instead.

\"], \"c\": [\"C\", \"

Compiled with gcc 8.2 using the gnu99 standard.

\\r\\n\\r\\n

Your code is compiled with level one optimization (-O1). AddressSanitizer is also enabled to help detect out-of-bounds and use-after-free bugs.

\\r\\n\\r\\n

Most standard library headers are already included automatically for your convenience.

\\r\\n\\r\\n

For hash table operations, you may use uthash. \\\"uthash.h\\\" is included by default. Below are some examples:

\\r\\n\\r\\n

1. Adding an item to a hash.\\r\\n

\\r\\nstruct hash_entry {\\r\\n    int id;            /* we'll use this field as the key */\\r\\n    char name[10];\\r\\n    UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n    HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

2. Looking up an item in a hash:\\r\\n

\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n    struct hash_entry *s;\\r\\n    HASH_FIND_INT(users, &user_id, s);\\r\\n    return s;\\r\\n}\\r\\n
\\r\\n

\\r\\n\\r\\n

3. Deleting an item in a hash:\\r\\n

\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n    HASH_DEL(users, user);  \\r\\n}\\r\\n
\\r\\n

\"], \"csharp\": [\"C#\", \"

C# 10 with .NET 6 runtime

\\r\\n\\r\\n

Your code is compiled with debug flag enabled (/debug).

\"], \"javascript\": [\"JavaScript\", \"

Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES6 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\\r\\n\\r\\n

For Priority Queue / Queue data structures, you may use datastructures-js/priority-queue and datastructures-js/queue.

\"], \"ruby\": [\"Ruby\", \"

Ruby 3.1

\\r\\n\\r\\n

Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms

\"], \"swift\": [\"Swift\", \"

Swift 5.5.2.

\"], \"golang\": [\"Go\", \"

Go 1.17.6.

\\r\\n\\r\\n

Support https://godoc.org/github.com/emirpasic/gods library.

\"], \"python3\": [\"Python3\", \"

Python 3.10.

\\r\\n\\r\\n

Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself.

\\r\\n\\r\\n

For Map/TreeMap data structure, you may use sortedcontainers library.

\"], \"scala\": [\"Scala\", \"

Scala 2.13.7.

\"], \"kotlin\": [\"Kotlin\", \"

Kotlin 1.3.10.

\"], \"rust\": [\"Rust\", \"

Rust 1.58.1

\\r\\n\\r\\n

Supports rand v0.6\\u00a0from crates.io

\"], \"php\": [\"PHP\", \"

PHP 8.1.

\\r\\n

With bcmath module

\"], \"typescript\": [\"Typescript\", \"

TypeScript 4.5.4, Node.js 16.13.2.

\\r\\n\\r\\n

Your code is run with --harmony flag, enabling new ES2020 features.

\\r\\n\\r\\n

lodash.js library is included by default.

\"], \"racket\": [\"Racket\", \"

Run with Racket 8.3.

\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 24.2\"], \"elixir\": [\"Elixir\", \"Elixir 1.13.0 with Erlang/OTP 24.2\"]}", "libraryUrl": null, "adminUrl": null, "challengeQuestion": null, "__typename": "QuestionNode" } } }