mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-09-04 15:01:40 +08:00
102 lines
22 KiB
JSON
102 lines
22 KiB
JSON
{
|
||
"data": {
|
||
"question": {
|
||
"questionId": "3971",
|
||
"questionFrontendId": "3626",
|
||
"categoryTitle": "Database",
|
||
"boundTopicId": 3732905,
|
||
"title": "Find Stores with Inventory Imbalance",
|
||
"titleSlug": "find-stores-with-inventory-imbalance",
|
||
"content": "<p>Table: <code>stores</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| store_id | int |\n| store_name | varchar |\n| location | varchar |\n+-------------+---------+\nstore_id is the unique identifier for this table.\nEach row contains information about a store and its location.\n</pre>\n\n<p>Table: <code>inventory</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| inventory_id| int |\n| store_id | int |\n| product_name| varchar |\n| quantity | int |\n| price | decimal |\n+-------------+---------+\ninventory_id is the unique identifier for this table.\nEach row represents the inventory of a specific product at a specific store.\n</pre>\n\n<p>Write a solution to find stores that have <strong>inventory imbalance</strong> - stores where the most expensive product has lower stock than the cheapest product.</p>\n\n<ul>\n\t<li>For each store, identify the <strong>most expensive product</strong> (highest price) and its quantity</li>\n\t<li>For each store, identify the <strong>cheapest product</strong> (lowest price) and its quantity</li>\n\t<li>A store has inventory imbalance if the most expensive product's quantity is <strong>less than</strong> the cheapest product's quantity</li>\n\t<li>Calculate the <strong>imbalance ratio</strong> as (cheapest_quantity / most_expensive_quantity)</li>\n\t<li><strong>Round</strong> the imbalance ratio to <strong>2</strong> decimal places</li>\n\t<li>Only include stores that have <strong>at least </strong><code>3</code><strong> different products</strong></li>\n</ul>\n\n<p>Return <em>the result table ordered by imbalance ratio in <strong>descending</strong> order, then by store name in <strong>ascending</strong> order</em>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>Input:</strong></p>\n\n<p>stores table:</p>\n\n<pre class=\"example-io\">\n+----------+----------------+-------------+\n| store_id | store_name | location |\n+----------+----------------+-------------+\n| 1 | Downtown Tech | New York |\n| 2 | Suburb Mall | Chicago |\n| 3 | City Center | Los Angeles |\n| 4 | Corner Shop | Miami |\n| 5 | Plaza Store | Seattle |\n+----------+----------------+-------------+\n</pre>\n\n<p>inventory table:</p>\n\n<pre class=\"example-io\">\n+--------------+----------+--------------+----------+--------+\n| inventory_id | store_id | product_name | quantity | price |\n+--------------+----------+--------------+----------+--------+\n| 1 | 1 | Laptop | 5 | 999.99 |\n| 2 | 1 | Mouse | 50 | 19.99 |\n| 3 | 1 | Keyboard | 25 | 79.99 |\n| 4 | 1 | Monitor | 15 | 299.99 |\n| 5 | 2 | Phone | 3 | 699.99 |\n| 6 | 2 | Charger | 100 | 25.99 |\n| 7 | 2 | Case | 75 | 15.99 |\n| 8 | 2 | Headphones | 20 | 149.99 |\n| 9 | 3 | Tablet | 2 | 499.99 |\n| 10 | 3 | Stylus | 80 | 29.99 |\n| 11 | 3 | Cover | 60 | 39.99 |\n| 12 | 4 | Watch | 10 | 299.99 |\n| 13 | 4 | Band | 25 | 49.99 |\n| 14 | 5 | Camera | 8 | 599.99 |\n| 15 | 5 | Lens | 12 | 199.99 |\n+--------------+----------+--------------+----------+--------+\n</pre>\n\n<p><strong>Output:</strong></p>\n\n<pre class=\"example-io\">\n+----------+----------------+-------------+------------------+--------------------+------------------+\n| store_id | store_name | location | most_exp_product | cheapest_product | imbalance_ratio |\n+----------+----------------+-------------+------------------+--------------------+------------------+\n| 3 | City Center | Los Angeles | Tablet | Stylus | 40.00 |\n| 1 | Downtown Tech | New York | Laptop | Mouse | 10.00 |\n| 2 | Suburb Mall | Chicago | Phone | Case | 25.00 |\n+----------+----------------+-------------+------------------+--------------------+------------------+\n</pre>\n\n<p><strong>Explanation:</strong></p>\n\n<ul>\n\t<li><strong>Downtown Tech (store_id = 1):</strong>\n\n\t<ul>\n\t\t<li>Most expensive product: Laptop ($999.99) with quantity 5</li>\n\t\t<li>Cheapest product: Mouse ($19.99) with quantity 50</li>\n\t\t<li>Inventory imbalance: 5 < 50 (expensive product has lower stock)</li>\n\t\t<li>Imbalance ratio: 50 / 5 = 10.00</li>\n\t\t<li>Has 4 products (≥ 3), so qualifies</li>\n\t</ul>\n\t</li>\n\t<li><strong>Suburb Mall (store_id = 2):</strong>\n\t<ul>\n\t\t<li>Most expensive product: Phone ($699.99) with quantity 3</li>\n\t\t<li>Cheapest product: Case ($15.99) with quantity 75</li>\n\t\t<li>Inventory imbalance: 3 < 75 (expensive product has lower stock)</li>\n\t\t<li>Imbalance ratio: 75 / 3 = 25.00</li>\n\t\t<li>Has 4 products (≥ 3), so qualifies</li>\n\t</ul>\n\t</li>\n\t<li><strong>City Center (store_id = 3):</strong>\n\t<ul>\n\t\t<li>Most expensive product: Tablet ($499.99) with quantity 2</li>\n\t\t<li>Cheapest product: Stylus ($29.99) with quantity 80</li>\n\t\t<li>Inventory imbalance: 2 < 80 (expensive product has lower stock)</li>\n\t\t<li>Imbalance ratio: 80 / 2 = 40.00</li>\n\t\t<li>Has 3 products (≥ 3), so qualifies</li>\n\t</ul>\n\t</li>\n\t<li><strong>Stores not included:</strong>\n\t<ul>\n\t\t<li>Corner Shop (store_id = 4): Only has 2 products (Watch, Band) - doesn't meet minimum 3 products requirement</li>\n\t\t<li>Plaza Store (store_id = 5): Only has 2 products (Camera, Lens) - doesn't meet minimum 3 products requirement</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p>The Results table is ordered by imbalance ratio in descending order, then by store name in ascending order</p>\n</div>\n",
|
||
"translatedTitle": "查找库存不平衡的店铺",
|
||
"translatedContent": "<p>表:<code>stores</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| store_id | int |\n| store_name | varchar |\n| location | varchar |\n+-------------+---------+\nstore_id 是这张表的唯一主键。\n每一行包含有关商店及其位置的信息。\n</pre>\n\n<p>表:<code>inventory</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| inventory_id| int |\n| store_id | int |\n| product_name| varchar |\n| quantity | int |\n| price | decimal |\n+-------------+---------+\ninventory_id 是这张表的唯一主键。\n每一行代表特定商店中某一特定产品的库存情况。\n</pre>\n\n<p>编写一个解决方案来查找库存不平衡的商店 - 即最贵商品的库存比最便宜商品少的商店。</p>\n\n<ul>\n\t<li>对于每个商店,识别 <strong>最贵的商品</strong>(最高价格)及其数量,如果有多个最贵的商品则选取数量最多的一个。</li>\n\t<li>对于每个商店,识别 <strong>最便宜的商品</strong>(最低价格)及其数量,如果有多个最便宜的物品则选取数量最多的一个。</li>\n\t<li>如果最贵商品的数量 <strong>少于</strong> 最便宜商品的数量,则商店存在库存不平衡。</li>\n\t<li>按(最便宜商品的数量/最贵商品的数量)计算 <strong>不平衡比</strong>。</li>\n\t<li>不平衡比 <strong>舍入到 2 位</strong> 小数</li>\n\t<li>结果只包含 <strong>至少有</strong><strong> </strong><code>3</code> <strong>个不同商品</strong> 的店铺</li>\n</ul>\n\n<p>返回结果表以不平衡比率降序排列,然后按商店名称升序排列。</p>\n\n<p>结果格式如下所示。</p>\n\n<p> </p>\n\n<p><strong class=\"example\">示例:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>输入:</strong></p>\n\n<p>stores 表:</p>\n\n<pre class=\"example-io\">\n+----------+----------------+-------------+\n| store_id | store_name | location |\n+----------+----------------+-------------+\n| 1 | Downtown Tech | New York |\n| 2 | Suburb Mall | Chicago |\n| 3 | City Center | Los Angeles |\n| 4 | Corner Shop | Miami |\n| 5 | Plaza Store | Seattle |\n+----------+----------------+-------------+\n</pre>\n\n<p>inventory 表:</p>\n\n<pre class=\"example-io\">\n+--------------+----------+--------------+----------+--------+\n| inventory_id | store_id | product_name | quantity | price |\n+--------------+----------+--------------+----------+--------+\n| 1 | 1 | Laptop | 5 | 999.99 |\n| 2 | 1 | Mouse | 50 | 19.99 |\n| 3 | 1 | Keyboard | 25 | 79.99 |\n| 4 | 1 | Monitor | 15 | 299.99 |\n| 5 | 2 | Phone | 3 | 699.99 |\n| 6 | 2 | Charger | 100 | 25.99 |\n| 7 | 2 | Case | 75 | 15.99 |\n| 8 | 2 | Headphones | 20 | 149.99 |\n| 9 | 3 | Tablet | 2 | 499.99 |\n| 10 | 3 | Stylus | 80 | 29.99 |\n| 11 | 3 | Cover | 60 | 39.99 |\n| 12 | 4 | Watch | 10 | 299.99 |\n| 13 | 4 | Band | 25 | 49.99 |\n| 14 | 5 | Camera | 8 | 599.99 |\n| 15 | 5 | Lens | 12 | 199.99 |\n+--------------+----------+--------------+----------+--------+\n</pre>\n\n<p><strong>输出:</strong></p>\n\n<pre class=\"example-io\">\n+----------+----------------+-------------+------------------+--------------------+------------------+\n| store_id | store_name | location | most_exp_product | cheapest_product | imbalance_ratio |\n+----------+----------------+-------------+------------------+--------------------+------------------+\n| 3 | City Center | Los Angeles | Tablet | Stylus | 40.00 |\n| 1 | Downtown Tech | New York | Laptop | Mouse | 10.00 |\n| 2 | Suburb Mall | Chicago | Phone | Case | 25.00 |\n+----------+----------------+-------------+------------------+--------------------+------------------+\n</pre>\n\n<p><strong>解释:</strong></p>\n\n<ul>\n\t<li><strong>Downtown Tech (store_id = 1):</strong>\n\n\t<ul>\n\t\t<li>最贵的商品:笔记本($999.99)数量为 5</li>\n\t\t<li>最便宜的商品:鼠标($19.99)数量为 50</li>\n\t\t<li>库存不平衡:5 < 50(贵的商品的库存更少)</li>\n\t\t<li>不平衡比:50 / 5 = 10.00</li>\n\t\t<li>有 4 件商品(≥ 3),所以满足要求</li>\n\t</ul>\n\t</li>\n\t<li><strong>Suburb Mall (store_id = 2):</strong>\n\t<ul>\n\t\t<li>最贵的商品:手机($699.99)数量为 3</li>\n\t\t<li>最便宜的商品:保护壳($15.99)数量为75</li>\n\t\t<li>库存不平衡:3 < 75(贵的商品的库存更少)</li>\n\t\t<li>不平衡比:75 / 3 = 25.00</li>\n\t\t<li>有 4 件商品(≥ 3),所以满足要求</li>\n\t</ul>\n\t</li>\n\t<li><strong>City Center (store_id = 3):</strong>\n\t<ul>\n\t\t<li>最贵的商品:平板电脑($499.99)数量为 2</li>\n\t\t<li>最便宜的商品:触控笔($29.99)数量为 80</li>\n\t\t<li>不平衡比:2 < 80(贵的商品的库存更少)</li>\n\t\t<li>不平衡比:80 / 2 = 40.00</li>\n\t\t<li>有 3 件商品(≥ 3),所以满足要求</li>\n\t</ul>\n\t</li>\n\t<li><strong>未包含的商店:</strong>\n\t<ul>\n\t\t<li>Corner Shop(store_id = 4):只有两件商品(手表,手环)- 不满足最少 3 件商品的要求</li>\n\t\t<li>Plaza Store(store_id = 5):只有两件商品(相机,镜头)- 不满足最少 3 件商品的要求</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p>结果表按不平衡比降序排序,然后以商店名升序排序。</p>\n</div>\n",
|
||
"isPaidOnly": false,
|
||
"difficulty": "Medium",
|
||
"likes": 1,
|
||
"dislikes": 0,
|
||
"isLiked": null,
|
||
"similarQuestions": "[]",
|
||
"contributors": [],
|
||
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false, \"cangjie\": false}",
|
||
"topicTags": [],
|
||
"companyTagStats": null,
|
||
"codeSnippets": [
|
||
{
|
||
"lang": "MySQL",
|
||
"langSlug": "mysql",
|
||
"code": "# Write your MySQL query statement below",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "MS SQL Server",
|
||
"langSlug": "mssql",
|
||
"code": "/* Write your T-SQL query statement below */",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Oracle",
|
||
"langSlug": "oraclesql",
|
||
"code": "/* Write your PL/SQL query statement below */",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Pandas",
|
||
"langSlug": "pythondata",
|
||
"code": "import pandas as pd\n\ndef find_inventory_imbalance(stores: pd.DataFrame, inventory: pd.DataFrame) -> pd.DataFrame:\n ",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "PostgreSQL",
|
||
"langSlug": "postgresql",
|
||
"code": "-- Write your PostgreSQL query statement below",
|
||
"__typename": "CodeSnippetNode"
|
||
}
|
||
],
|
||
"stats": "{\"totalAccepted\": \"238\", \"totalSubmission\": \"410\", \"totalAcceptedRaw\": 238, \"totalSubmissionRaw\": 410, \"acRate\": \"58.0%\"}",
|
||
"hints": [],
|
||
"solution": null,
|
||
"status": null,
|
||
"sampleTestCase": "{\"headers\":{\"stores\":[\"store_id\",\"store_name\",\"location\"],\"inventory\":[\"inventory_id\",\"store_id\",\"product_name\",\"quantity\",\"price\"]},\"rows\":{\"stores\":[[1,\"Downtown Tech\",\"New York\"],[2,\"Suburb Mall\",\"Chicago\"],[3,\"City Center\",\"Los Angeles\"],[4,\"Corner Shop\",\"Miami\"],[5,\"Plaza Store\",\"Seattle\"]],\"inventory\":[[1,1,\"Laptop\",5,999.99],[2,1,\"Mouse\",50,19.99],[3,1,\"Keyboard\",25,79.99],[4,1,\"Monitor\",15,299.99],[5,2,\"Phone\",3,699.99],[6,2,\"Charger\",100,25.99],[7,2,\"Case\",75,15.99],[8,2,\"Headphones\",20,149.99],[9,3,\"Tablet\",2,499.99],[10,3,\"Stylus\",80,29.99],[11,3,\"Cover\",60,39.99],[12,4,\"Watch\",10,299.99],[13,4,\"Band\",25,49.99],[14,5,\"Camera\",8,599.99],[15,5,\"Lens\",12,199.99]]}}",
|
||
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists stores (\\n store_id INT,\\n store_name VARCHAR(255),\\n location VARCHAR(255)\\n)\",\"CREATE TABLE if not exists inventory (\\n inventory_id INT,\\n store_id INT,\\n product_name VARCHAR(255),\\n quantity INT,\\n price DECIMAL(10, 2)\\n)\"],\"mssql\":[\"CREATE TABLE stores (\\n store_id INT,\\n store_name VARCHAR(255),\\n location VARCHAR(255)\\n)\",\"CREATE TABLE inventory (\\n inventory_id INT,\\n store_id INT,\\n product_name VARCHAR(255),\\n quantity INT,\\n price DECIMAL(10, 2)\\n)\"],\"oraclesql\":[\"CREATE TABLE stores (\\n store_id NUMBER,\\n store_name VARCHAR2(255),\\n location VARCHAR2(255)\\n)\",\"CREATE TABLE inventory (\\n inventory_id NUMBER,\\n store_id NUMBER,\\n product_name VARCHAR2(255),\\n quantity NUMBER,\\n price NUMBER(10, 2)\\n)\"],\"database\":true,\"name\":\"find_inventory_imbalance\",\"postgresql\":[\"CREATE TABLE IF NOT EXISTS stores (\\n store_id INTEGER,\\n store_name VARCHAR(255),\\n location VARCHAR(255)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS inventory (\\n inventory_id INTEGER,\\n store_id INTEGER,\\n product_name VARCHAR(255),\\n quantity INTEGER,\\n price DECIMAL(10, 2)\\n);\\n\"],\"pythondata\":[\"stores = pd.DataFrame([], columns=['store_id', 'store_name', 'location']).astype({'store_id': 'int64', 'store_name': 'string', 'location': 'string'})\\n\",\"inventory = pd.DataFrame([], columns=['inventory_id', 'store_id', 'product_name', 'quantity', 'price']).astype({'inventory_id': 'int64', 'store_id': 'int64', 'product_name': 'string', 'quantity': 'int64', 'price': 'float64'})\\n\"],\"database_schema\":{\"stores\":{\"store_id\":\"INT\",\"store_name\":\"VARCHAR(255)\",\"location\":\"VARCHAR(255)\"},\"inventory\":{\"inventory_id\":\"INT\",\"store_id\":\"INT\",\"product_name\":\"VARCHAR(255)\",\"quantity\":\"INT\",\"price\":\"DECIMAL(10, 2)\"}}}",
|
||
"judgerAvailable": true,
|
||
"judgeType": "large",
|
||
"mysqlSchemas": [
|
||
"CREATE TABLE if not exists stores (\n store_id INT,\n store_name VARCHAR(255),\n location VARCHAR(255)\n)",
|
||
"CREATE TABLE if not exists inventory (\n inventory_id INT,\n store_id INT,\n product_name VARCHAR(255),\n quantity INT,\n price DECIMAL(10, 2)\n)",
|
||
"Truncate table stores",
|
||
"insert into stores (store_id, store_name, location) values ('1', 'Downtown Tech', 'New York')",
|
||
"insert into stores (store_id, store_name, location) values ('2', 'Suburb Mall', 'Chicago')",
|
||
"insert into stores (store_id, store_name, location) values ('3', 'City Center', 'Los Angeles')",
|
||
"insert into stores (store_id, store_name, location) values ('4', 'Corner Shop', 'Miami')",
|
||
"insert into stores (store_id, store_name, location) values ('5', 'Plaza Store', 'Seattle')",
|
||
"Truncate table inventory",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('1', '1', 'Laptop', '5', '999.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('2', '1', 'Mouse', '50', '19.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('3', '1', 'Keyboard', '25', '79.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('4', '1', 'Monitor', '15', '299.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('5', '2', 'Phone', '3', '699.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('6', '2', 'Charger', '100', '25.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('7', '2', 'Case', '75', '15.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('8', '2', 'Headphones', '20', '149.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('9', '3', 'Tablet', '2', '499.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('10', '3', 'Stylus', '80', '29.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('11', '3', 'Cover', '60', '39.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('12', '4', 'Watch', '10', '299.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('13', '4', 'Band', '25', '49.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('14', '5', 'Camera', '8', '599.99')",
|
||
"insert into inventory (inventory_id, store_id, product_name, quantity, price) values ('15', '5', 'Lens', '12', '199.99')"
|
||
],
|
||
"enableRunCode": true,
|
||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.2.2 and NumPy 1.26.4<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||
"book": null,
|
||
"isSubscribed": false,
|
||
"isDailyQuestion": false,
|
||
"dailyRecordStatus": null,
|
||
"editorType": "CKEDITOR",
|
||
"ugcQuestionId": null,
|
||
"style": "LEETCODE",
|
||
"exampleTestcases": "{\"headers\":{\"stores\":[\"store_id\",\"store_name\",\"location\"],\"inventory\":[\"inventory_id\",\"store_id\",\"product_name\",\"quantity\",\"price\"]},\"rows\":{\"stores\":[[1,\"Downtown Tech\",\"New York\"],[2,\"Suburb Mall\",\"Chicago\"],[3,\"City Center\",\"Los Angeles\"],[4,\"Corner Shop\",\"Miami\"],[5,\"Plaza Store\",\"Seattle\"]],\"inventory\":[[1,1,\"Laptop\",5,999.99],[2,1,\"Mouse\",50,19.99],[3,1,\"Keyboard\",25,79.99],[4,1,\"Monitor\",15,299.99],[5,2,\"Phone\",3,699.99],[6,2,\"Charger\",100,25.99],[7,2,\"Case\",75,15.99],[8,2,\"Headphones\",20,149.99],[9,3,\"Tablet\",2,499.99],[10,3,\"Stylus\",80,29.99],[11,3,\"Cover\",60,39.99],[12,4,\"Watch\",10,299.99],[13,4,\"Band\",25,49.99],[14,5,\"Camera\",8,599.99],[15,5,\"Lens\",12,199.99]]}}",
|
||
"__typename": "QuestionNode"
|
||
}
|
||
}
|
||
} |