mirror of
				https://gitee.com/coder-xiaomo/leetcode-problemset
				synced 2025-11-04 03:33:12 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			36 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			36 lines
		
	
	
		
			1.1 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<p>Given an integer array <code>nums</code>, return <em>the length of the longest <strong>strictly increasing </strong></em><span data-keyword="subsequence-array"><em><strong>subsequence</strong></em></span>.</p>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong class="example">Example 1:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [10,9,2,5,3,7,101,18]
 | 
						|
<strong>Output:</strong> 4
 | 
						|
<strong>Explanation:</strong> The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
 | 
						|
</pre>
 | 
						|
 | 
						|
<p><strong class="example">Example 2:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [0,1,0,3,2,3]
 | 
						|
<strong>Output:</strong> 4
 | 
						|
</pre>
 | 
						|
 | 
						|
<p><strong class="example">Example 3:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [7,7,7,7,7,7,7]
 | 
						|
<strong>Output:</strong> 1
 | 
						|
</pre>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong>Constraints:</strong></p>
 | 
						|
 | 
						|
<ul>
 | 
						|
	<li><code>1 <= nums.length <= 2500</code></li>
 | 
						|
	<li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li>
 | 
						|
</ul>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><b>Follow up:</b> Can you come up with an algorithm that runs in <code>O(n log(n))</code> time complexity?</p>
 |