1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 02:58:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/problem (English)/被列覆盖的最多行数(English) [maximum-rows-covered-by-columns].html
2022-09-04 10:46:24 +08:00

42 lines
1.8 KiB
HTML

<p>You are given a <strong>0-indexed</strong> <code>m x n</code> binary matrix <code>mat</code> and an integer <code>cols</code>, which denotes the number of columns you must choose.</p>
<p>A row is <strong>covered</strong> by a set of columns if each cell in the row that has a value of <code>1</code> also lies in one of the columns of the chosen set.</p>
<p>Return <em>the <strong>maximum</strong> number of rows that can be <strong>covered</strong> by a set of </em><code>cols</code><em> columns.</em></p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<p><strong><img alt="" src="https://assets.leetcode.com/uploads/2022/07/14/rowscovered.png" style="width: 250px; height: 417px;" /></strong></p>
<pre>
<strong>Input:</strong> mat = [[0,0,0],[1,0,1],[0,1,1],[0,0,1]], cols = 2
<strong>Output:</strong> 3
<strong>Explanation:</strong>
As shown in the diagram above, one possible way of covering 3 rows is by selecting the 0th and 2nd columns.
It can be shown that no more than 3 rows can be covered, so we return 3.
</pre>
<p><strong>Example 2:</strong></p>
<p><strong><img alt="" src="https://assets.leetcode.com/uploads/2022/07/14/rowscovered2.png" style="width: 83px; height: 247px;" /></strong></p>
<pre>
<strong>Input:</strong> mat = [[1],[0]], cols = 1
<strong>Output:</strong> 2
<strong>Explanation:</strong>
Selecting the only column will result in both rows being covered, since the entire matrix is selected.
Therefore, we return 2.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == mat.length</code></li>
<li><code>n == mat[i].length</code></li>
<li><code>1 &lt;= m, n &lt;= 12</code></li>
<li><code>mat[i][j]</code> is either <code>0</code> or <code>1</code>.</li>
<li><code>1 &lt;= cols &lt;= n</code></li>
</ul>