1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-05 15:31:43 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
Files
leetcode-problemset/leetcode-cn/originData/find-category-recommendation-pairs.json
2025-05-25 15:08:47 +08:00

116 lines
21 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"data": {
"question": {
"questionId": "3891",
"questionFrontendId": "3554",
"categoryTitle": "Database",
"boundTopicId": 3680766,
"title": "Find Category Recommendation Pairs",
"titleSlug": "find-category-recommendation-pairs",
"content": "<p>Table: <code>ProductPurchases</code></p>\n\n<pre>\n+-------------+------+\n| Column Name | Type | \n+-------------+------+\n| user_id | int |\n| product_id | int |\n| quantity | int |\n+-------------+------+\n(user_id, product_id) is the unique identifier for this table. \nEach row represents a purchase of a product by a user in a specific quantity.\n</pre>\n\n<p>Table: <code>ProductInfo</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type | \n+-------------+---------+\n| product_id | int |\n| category | varchar |\n| price | decimal |\n+-------------+---------+\nproduct_id is the unique identifier for this table.\nEach row assigns a category and price to a product.\n</pre>\n\n<p>Amazon wants to understand shopping patterns across product categories. Write a solution to:</p>\n\n<ol>\n\t<li>Find all <strong>category pairs</strong> (where <code>category1</code> &lt; <code>category2</code>)</li>\n\t<li>For <strong>each category pair</strong>, determine the number of <strong>unique</strong> <strong>customers</strong> who purchased products from <strong>both</strong> categories</li>\n</ol>\n\n<p>A category pair is considered <strong>reportable</strong> if at least <code>3</code> different customers have purchased products from both categories.</p>\n\n<p>Return <em>the result table of reportable category pairs ordered by <strong>customer_count</strong> in <strong>descending</strong> order, and in case of a tie, by <strong>category1</strong> in <strong>ascending</strong> order lexicographically, and then by <strong>category2</strong> in <strong>ascending</strong> order.</em></p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>Input:</strong></p>\n\n<p>ProductPurchases table:</p>\n\n<pre class=\"example-io\">\n+---------+------------+----------+\n| user_id | product_id | quantity |\n+---------+------------+----------+\n| 1 | 101 | 2 |\n| 1 | 102 | 1 |\n| 1 | 201 | 3 |\n| 1 | 301 | 1 |\n| 2 | 101 | 1 |\n| 2 | 102 | 2 |\n| 2 | 103 | 1 |\n| 2 | 201 | 5 |\n| 3 | 101 | 2 |\n| 3 | 103 | 1 |\n| 3 | 301 | 4 |\n| 3 | 401 | 2 |\n| 4 | 101 | 1 |\n| 4 | 201 | 3 |\n| 4 | 301 | 1 |\n| 4 | 401 | 2 |\n| 5 | 102 | 2 |\n| 5 | 103 | 1 |\n| 5 | 201 | 2 |\n| 5 | 202 | 3 |\n+---------+------------+----------+\n</pre>\n\n<p>ProductInfo table:</p>\n\n<pre class=\"example-io\">\n+------------+-------------+-------+\n| product_id | category | price |\n+------------+-------------+-------+\n| 101 | Electronics | 100 |\n| 102 | Books | 20 |\n| 103 | Books | 35 |\n| 201 | Clothing | 45 |\n| 202 | Clothing | 60 |\n| 301 | Sports | 75 |\n| 401 | Kitchen | 50 |\n+------------+-------------+-------+\n</pre>\n\n<p><strong>Output:</strong></p>\n\n<pre class=\"example-io\">\n+-------------+-------------+----------------+\n| category1 | category2 | customer_count |\n+-------------+-------------+----------------+\n| Books | Clothing | 3 |\n| Books | Electronics | 3 |\n| Clothing | Electronics | 3 |\n| Electronics | Sports | 3 |\n+-------------+-------------+----------------+\n</pre>\n\n<p><strong>Explanation:</strong></p>\n\n<ul>\n\t<li><strong>Books-Clothing</strong>:\n\n\t<ul>\n\t\t<li>User 1 purchased products from Books (102) and Clothing (201)</li>\n\t\t<li>User 2 purchased products from Books (102, 103) and Clothing (201)</li>\n\t\t<li>User 5 purchased products from Books (102, 103) and Clothing (201, 202)</li>\n\t\t<li>Total: 3 customers purchased from both categories</li>\n\t</ul>\n\t</li>\n\t<li><strong>Books-Electronics</strong>:\n\t<ul>\n\t\t<li>User 1 purchased products from Books (102) and Electronics (101)</li>\n\t\t<li>User 2 purchased products from Books (102, 103) and Electronics (101)</li>\n\t\t<li>User 3 purchased products from Books (103) and Electronics (101)</li>\n\t\t<li>Total: 3 customers purchased from both categories</li>\n\t</ul>\n\t</li>\n\t<li><strong>Clothing-Electronics</strong>:\n\t<ul>\n\t\t<li>User 1 purchased products from Clothing (201) and Electronics (101)</li>\n\t\t<li>User 2 purchased products from Clothing (201) and Electronics (101)</li>\n\t\t<li>User 4 purchased products from Clothing (201) and Electronics (101)</li>\n\t\t<li>Total: 3 customers purchased from both categories</li>\n\t</ul>\n\t</li>\n\t<li><strong>Electronics-Sports</strong>:\n\t<ul>\n\t\t<li>User 1 purchased products from Electronics (101) and Sports (301)</li>\n\t\t<li>User 3 purchased products from Electronics (101) and Sports (301)</li>\n\t\t<li>User 4 purchased products from Electronics (101) and Sports (301)</li>\n\t\t<li>Total: 3 customers purchased from both categories</li>\n\t</ul>\n\t</li>\n\t<li>Other category pairs like Clothing-Sports (only 2 customers: Users 1 and 4) and Books-Kitchen (only 1 customer: User 3) have fewer than 3 shared customers and are not included in the result.</li>\n</ul>\n\n<p>The result is ordered by customer_count in descending order. Since all pairs have the same customer_count of 3, they are ordered by category1 (then category2) in ascending order.</p>\n</div>\n",
"translatedTitle": "查找类别推荐对",
"translatedContent": "<p>表:<code>ProductPurchases</code></p>\n\n<pre>\n+-------------+------+\n| Column Name | Type | \n+-------------+------+\n| user_id | int |\n| product_id | int |\n| quantity | int |\n+-------------+------+\n(user_id, product_id) 是这张表的唯一主键。\n每一行代表用户以特定数量购买的一种产品。\n</pre>\n\n<p>表:<code>ProductInfo</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type | \n+-------------+---------+\n| product_id | int |\n| category | varchar |\n| price | decimal |\n+-------------+---------+\nproduct_id 是这张表的唯一主键。\n每一行表示一件商品的类别和价格。\n</pre>\n\n<p>亚马逊想要了解不同产品类别的购物模式。编写一个解决方案:</p>\n\n<ol>\n\t<li>查找所有 <strong>类别对</strong>(其中&nbsp;<code>category1</code> &lt; <code>category2</code></li>\n\t<li>对于 <strong>每个类别对</strong>,确定 <strong>同时</strong> 购买了两类别产品的 <strong>不同用户</strong> 数量</li>\n</ol>\n\n<p>如果至少有 <code>3</code> 个不同的客户购买了两个类别的产品,则类别对被视为 <strong>可报告的</strong>。</p>\n\n<p>返回可报告类别对的结果表以<em>&nbsp;</em><strong>customer_count</strong><em>&nbsp;</em><strong>降序</strong><em> </em>排序,并且为了防止排序持平,以<em>&nbsp;</em><strong>category1 </strong>字典序<strong> 升序</strong>&nbsp;排序,然后以&nbsp;<strong>category2 升序</strong>&nbsp;排序。</p>\n\n<p>结果格式如下所示。</p>\n\n<p>&nbsp;</p>\n\n<p><strong class=\"example\">示例:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>输入:</strong></p>\n\n<p>ProductPurchases 表:</p>\n\n<pre class=\"example-io\">\n+---------+------------+----------+\n| user_id | product_id | quantity |\n+---------+------------+----------+\n| 1 | 101 | 2 |\n| 1 | 102 | 1 |\n| 1 | 201 | 3 |\n| 1 | 301 | 1 |\n| 2 | 101 | 1 |\n| 2 | 102 | 2 |\n| 2 | 103 | 1 |\n| 2 | 201 | 5 |\n| 3 | 101 | 2 |\n| 3 | 103 | 1 |\n| 3 | 301 | 4 |\n| 3 | 401 | 2 |\n| 4 | 101 | 1 |\n| 4 | 201 | 3 |\n| 4 | 301 | 1 |\n| 4 | 401 | 2 |\n| 5 | 102 | 2 |\n| 5 | 103 | 1 |\n| 5 | 201 | 2 |\n| 5 | 202 | 3 |\n+---------+------------+----------+\n</pre>\n\n<p>ProductInfo 表:</p>\n\n<pre class=\"example-io\">\n+------------+-------------+-------+\n| product_id | category | price |\n+------------+-------------+-------+\n| 101 | Electronics | 100 |\n| 102 | Books | 20 |\n| 103 | Books | 35 |\n| 201 | Clothing | 45 |\n| 202 | Clothing | 60 |\n| 301 | Sports | 75 |\n| 401 | Kitchen | 50 |\n+------------+-------------+-------+\n</pre>\n\n<p><strong>输出:</strong></p>\n\n<pre class=\"example-io\">\n+-------------+-------------+----------------+\n| category1 | category2 | customer_count |\n+-------------+-------------+----------------+\n| Books | Clothing | 3 |\n| Books | Electronics | 3 |\n| Clothing | Electronics | 3 |\n| Electronics | Sports | 3 |\n+-------------+-------------+----------------+\n</pre>\n\n<p><strong>解释:</strong></p>\n\n<ul>\n\t<li><strong>Books-Clothing</strong>:\n\n\t<ul>\n\t\t<li>用户 1 购买来自 Books (102) 和 Clothing (201) 的商品</li>\n\t\t<li>用户 2 购买来自 Books (102, 103) 和 Clothing (201) 的商品</li>\n\t\t<li>用户 5 购买来自 Books (102, 103) 和 Clothing (201, 202) 的商品</li>\n\t\t<li>共计3 个用户购买同一类别的商品</li>\n\t</ul>\n\t</li>\n\t<li><strong>Books-Electronics</strong>:\n\t<ul>\n\t\t<li>用户 1 购买来自 Books (102) 和 Electronics (101) 的商品</li>\n\t\t<li>用户 2 购买来自 Books (102, 103) 和 Electronics (101)&nbsp;的商品</li>\n\t\t<li>用户 3&nbsp;购买来自 Books (103) 和 Electronics (101)&nbsp;的商品</li>\n\t\t<li>共计3 个消费者购买同一类别的商品</li>\n\t</ul>\n\t</li>\n\t<li><strong>Clothing-Electronics</strong>:\n\t<ul>\n\t\t<li>用户 1 购买来自 Clothing (201) 和 Electronics (101) 的商品</li>\n\t\t<li>用户 2 购买来自 Clothing (201) 和 Electronics (101) 的商品</li>\n\t\t<li>用户 4&nbsp;购买来自 Clothing (201) 和 Electronics (101) 的商品</li>\n\t\t<li>共计3 个消费者购买同一类别的商品</li>\n\t</ul>\n\t</li>\n\t<li><strong>Electronics-Sports</strong>:\n\t<ul>\n\t\t<li>用户 1 购买来自 Electronics (101) 和 Sports (301) 的商品</li>\n\t\t<li>用户 3&nbsp;购买来自 Electronics (101) 和 Sports (301) 的商品</li>\n\t\t<li>用户 4&nbsp;购买来自 Electronics (101) 和 Sports (301) 的商品</li>\n\t\t<li>共计3 个消费者购买同一类别的商品</li>\n\t</ul>\n\t</li>\n\t<li>其它类别对比如 Clothing-Sports只有 2 个消费者:用户 1 和 4和 Books-Kitchen只有 1 个消费者:用户 3共同的消费者少于 3 个,因此不包含在结果内。</li>\n</ul>\n\n<p>结果按&nbsp;customer_count 降序排列。由于所有对都有相同的客户数量 3它们按 category1然后是 category2升序排列。</p>\n</div>\n",
"isPaidOnly": false,
"difficulty": "Hard",
"likes": 0,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false, \"cangjie\": false}",
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": "数据库",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "MySQL",
"langSlug": "mysql",
"code": "# Write your MySQL query statement below",
"__typename": "CodeSnippetNode"
},
{
"lang": "MS SQL Server",
"langSlug": "mssql",
"code": "/* Write your T-SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Oracle",
"langSlug": "oraclesql",
"code": "/* Write your PL/SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef find_category_recommendation_pairs(product_purchases: pd.DataFrame, product_info: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "PostgreSQL",
"langSlug": "postgresql",
"code": "-- Write your PostgreSQL query statement below",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"88\", \"totalSubmission\": \"107\", \"totalAcceptedRaw\": 88, \"totalSubmissionRaw\": 107, \"acRate\": \"82.2%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"ProductPurchases\":[\"user_id\",\"product_id\",\"quantity\"],\"ProductInfo\":[\"product_id\",\"category\",\"price\"]},\"rows\":{\"ProductPurchases\":[[1,101,2],[1,102,1],[1,201,3],[1,301,1],[2,101,1],[2,102,2],[2,103,1],[2,201,5],[3,101,2],[3,103,1],[3,301,4],[3,401,2],[4,101,1],[4,201,3],[4,301,1],[4,401,2],[5,102,2],[5,103,1],[5,201,2],[5,202,3]],\"ProductInfo\":[[101,\"Electronics\",100],[102,\"Books\",20],[103,\"Books\",35],[201,\"Clothing\",45],[202,\"Clothing\",60],[301,\"Sports\",75],[401,\"Kitchen\",50]]}}",
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists ProductPurchases (\\n user_id INT,\\n product_id INT,\\n quantity INT\\n)\",\"CREATE TABLE if not exists ProductInfo (\\n product_id INT,\\n category VARCHAR(100),\\n price DECIMAL(10, 2)\\n)\"],\"mssql\":[\"CREATE TABLE ProductPurchases (\\n user_id INT,\\n product_id INT,\\n quantity INT\\n)\",\"CREATE TABLE ProductInfo (\\n product_id INT,\\n category VARCHAR(100),\\n price DECIMAL(10, 2)\\n)\"],\"oraclesql\":[\"CREATE TABLE ProductPurchases (\\n user_id NUMBER,\\n product_id NUMBER,\\n quantity NUMBER\\n)\",\"CREATE TABLE ProductInfo (\\n product_id NUMBER,\\n category VARCHAR2(100),\\n price NUMBER(10, 2)\\n)\"],\"postgresql\":[\"CREATE TABLE ProductPurchases (\\n user_id INTEGER,\\n product_id INTEGER,\\n quantity INTEGER\\n);\",\"CREATE TABLE ProductInfo (\\n product_id INTEGER,\\n category VARCHAR(100),\\n price NUMERIC(10, 2)\\n);\"],\"name\":\"find_category_recommendation_pairs\",\"pythondata\":[\"ProductPurchases = pd.DataFrame({\\n \\\"user_id\\\": pd.Series(dtype='int64'),\\n \\\"product_id\\\": pd.Series(dtype='int64'),\\n \\\"quantity\\\": pd.Series(dtype='int64')\\n})\",\"ProductInfo= pd.DataFrame({\\n \\\"product_id\\\": pd.Series(dtype='int64'),\\n \\\"category\\\": pd.Series(dtype='string'),\\n \\\"price\\\": pd.Series(dtype='float64') # Reflects NUMBER(10, 2)\\n})\"],\"database\":true,\"database_schema\":{\"ProductPurchases\":{\"user_id\":\"INT\",\"product_id\":\"INT\",\"quantity\":\"INT\"},\"ProductInfo\":{\"product_id\":\"INT\",\"category\":\"VARCHAR(100)\",\"price\":\"DECIMAL(10, 2)\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"CREATE TABLE if not exists ProductPurchases (\n user_id INT,\n product_id INT,\n quantity INT\n)",
"CREATE TABLE if not exists ProductInfo (\n product_id INT,\n category VARCHAR(100),\n price DECIMAL(10, 2)\n)",
"Truncate table ProductPurchases",
"insert into ProductPurchases (user_id, product_id, quantity) values ('1', '101', '2')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('1', '102', '1')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('1', '201', '3')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('1', '301', '1')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('2', '101', '1')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('2', '102', '2')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('2', '103', '1')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('2', '201', '5')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('3', '101', '2')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('3', '103', '1')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('3', '301', '4')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('3', '401', '2')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('4', '101', '1')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('4', '201', '3')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('4', '301', '1')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('4', '401', '2')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('5', '102', '2')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('5', '103', '1')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('5', '201', '2')",
"insert into ProductPurchases (user_id, product_id, quantity) values ('5', '202', '3')",
"Truncate table ProductInfo",
"insert into ProductInfo (product_id, category, price) values ('101', 'Electronics', '100')",
"insert into ProductInfo (product_id, category, price) values ('102', 'Books', '20')",
"insert into ProductInfo (product_id, category, price) values ('103', 'Books', '35')",
"insert into ProductInfo (product_id, category, price) values ('201', 'Clothing', '45')",
"insert into ProductInfo (product_id, category, price) values ('202', 'Clothing', '60')",
"insert into ProductInfo (product_id, category, price) values ('301', 'Sports', '75')",
"insert into ProductInfo (product_id, category, price) values ('401', 'Kitchen', '50')"
],
"enableRunCode": true,
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.2.2 and NumPy 1.26.4<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"ProductPurchases\":[\"user_id\",\"product_id\",\"quantity\"],\"ProductInfo\":[\"product_id\",\"category\",\"price\"]},\"rows\":{\"ProductPurchases\":[[1,101,2],[1,102,1],[1,201,3],[1,301,1],[2,101,1],[2,102,2],[2,103,1],[2,201,5],[3,101,2],[3,103,1],[3,301,4],[3,401,2],[4,101,1],[4,201,3],[4,301,1],[4,401,2],[5,102,2],[5,103,1],[5,201,2],[5,202,3]],\"ProductInfo\":[[101,\"Electronics\",100],[102,\"Books\",20],[103,\"Books\",35],[201,\"Clothing\",45],[202,\"Clothing\",60],[301,\"Sports\",75],[401,\"Kitchen\",50]]}}",
"__typename": "QuestionNode"
}
}
}