mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
89 lines
9.0 KiB
JSON
89 lines
9.0 KiB
JSON
{
|
||
"data": {
|
||
"question": {
|
||
"questionId": "1948",
|
||
"questionFrontendId": "1795",
|
||
"categoryTitle": "Database",
|
||
"boundTopicId": 669283,
|
||
"title": "Rearrange Products Table",
|
||
"titleSlug": "rearrange-products-table",
|
||
"content": "<p>Table: <code>Products</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| product_id | int |\n| store1 | int |\n| store2 | int |\n| store3 | int |\n+-------------+---------+\nproduct_id is the primary key (column with unique values) for this table.\nEach row in this table indicates the product's price in 3 different stores: store1, store2, and store3.\nIf the product is not available in a store, the price will be null in that store's column.\n</pre>\n\n<p> </p>\n\n<p>Write a solution to rearrange the <code>Products</code> table so that each row has <code>(product_id, store, price)</code>. If a product is not available in a store, do <strong>not</strong> include a row with that <code>product_id</code> and <code>store</code> combination in the result table.</p>\n\n<p>Return the result table in <strong>any order</strong>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nProducts table:\n+------------+--------+--------+--------+\n| product_id | store1 | store2 | store3 |\n+------------+--------+--------+--------+\n| 0 | 95 | 100 | 105 |\n| 1 | 70 | null | 80 |\n+------------+--------+--------+--------+\n<strong>Output:</strong> \n+------------+--------+-------+\n| product_id | store | price |\n+------------+--------+-------+\n| 0 | store1 | 95 |\n| 0 | store2 | 100 |\n| 0 | store3 | 105 |\n| 1 | store1 | 70 |\n| 1 | store3 | 80 |\n+------------+--------+-------+\n<strong>Explanation:</strong> \nProduct 0 is available in all three stores with prices 95, 100, and 105 respectively.\nProduct 1 is available in store1 with price 70 and store3 with price 80. The product is not available in store2.\n</pre>\n",
|
||
"translatedTitle": "每个产品在不同商店的价格",
|
||
"translatedContent": "<p>表:<code>Products</code></p>\n\n<pre>\n+-------------+---------+\n| Column Name | Type |\n+-------------+---------+\n| product_id | int |\n| store1 | int |\n| store2 | int |\n| store3 | int |\n+-------------+---------+\n在 SQL 中,这张表的主键是 product_id(产品Id)。\n每行存储了这一产品在不同商店 store1, store2, store3 的价格。\n如果这一产品在商店里没有出售,则值将为 null。\n</pre>\n\n<p> </p>\n\n<p>请你重构 <code>Products</code> 表,查询每个产品在不同商店的价格,使得输出的格式变为<code>(product_id, store, price)</code> 。如果这一产品在商店里没有出售,则不输出这一行。</p>\n\n<p>输出结果表中的 <strong>顺序不作要求</strong> 。</p>\n\n<p>查询输出格式请参考下面示例。</p>\n\n<p> </p>\n\n<p><strong>示例 1:</strong></p>\n\n<pre>\n<strong>输入:</strong>\nProducts table:\n+------------+--------+--------+--------+\n| product_id | store1 | store2 | store3 |\n+------------+--------+--------+--------+\n| 0 | 95 | 100 | 105 |\n| 1 | 70 | null | 80 |\n+------------+--------+--------+--------+\n<strong>输出:</strong>\n+------------+--------+-------+\n| product_id | store | price |\n+------------+--------+-------+\n| 0 | store1 | 95 |\n| 0 | store2 | 100 |\n| 0 | store3 | 105 |\n| 1 | store1 | 70 |\n| 1 | store3 | 80 |\n+------------+--------+-------+\n<strong>解释:</strong>\n产品 0 在 store1、store2、store3 的价格分别为 95、100、105。\n产品 1 在 store1、store3 的价格分别为 70、80。在 store2 无法买到。</pre>\n",
|
||
"isPaidOnly": false,
|
||
"difficulty": "Easy",
|
||
"likes": 157,
|
||
"dislikes": 0,
|
||
"isLiked": null,
|
||
"similarQuestions": "[]",
|
||
"contributors": [],
|
||
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
|
||
"topicTags": [
|
||
{
|
||
"name": "Database",
|
||
"slug": "database",
|
||
"translatedName": "数据库",
|
||
"__typename": "TopicTagNode"
|
||
}
|
||
],
|
||
"companyTagStats": null,
|
||
"codeSnippets": [
|
||
{
|
||
"lang": "MySQL",
|
||
"langSlug": "mysql",
|
||
"code": "# Write your MySQL query statement below",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "MS SQL Server",
|
||
"langSlug": "mssql",
|
||
"code": "/* Write your T-SQL query statement below */",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Oracle",
|
||
"langSlug": "oraclesql",
|
||
"code": "/* Write your PL/SQL query statement below */",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Pandas",
|
||
"langSlug": "pythondata",
|
||
"code": "import pandas as pd\n\ndef rearrange_products_table(products: pd.DataFrame) -> pd.DataFrame:\n ",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "PostgreSQL",
|
||
"langSlug": "postgresql",
|
||
"code": "-- Write your PostgreSQL query statement below",
|
||
"__typename": "CodeSnippetNode"
|
||
}
|
||
],
|
||
"stats": "{\"totalAccepted\": \"46.8K\", \"totalSubmission\": \"59.8K\", \"totalAcceptedRaw\": 46790, \"totalSubmissionRaw\": 59821, \"acRate\": \"78.2%\"}",
|
||
"hints": [],
|
||
"solution": null,
|
||
"status": null,
|
||
"sampleTestCase": "{\"headers\":{\"Products\":[\"product_id\",\"store1\",\"store2\",\"store3\"]},\"rows\":{\"Products\":[[0, 95, 100, 105], [1, 70, null, 80]]}}",
|
||
"metaData": "{\"mysql\":[\"Create table If Not Exists Products (product_id int, store1 int, store2 int, store3 int)\"],\"mssql\":[\"Create table Products (product_id int, store1 int, store2 int, store3 int)\"],\"oraclesql\":[\"Create table Products (product_id int, store1 int, store2 int, store3 int)\"],\"database\":true,\"name\":\"rearrange_products_table\",\"pythondata\":[\"Products = pd.DataFrame([], columns=['product_id', 'store1', 'store2', 'store3']).astype({'product_id':'Int64', 'store1':'Int64', 'store2':'Int64', 'store3':'Int64'})\"],\"manual\":false,\"postgresql\":[\"Create table If Not Exists Products (product_id int, store1 int, store2 int, store3 int)\\n\"],\"database_schema\":{\"Products\":{\"product_id\":\"INT\",\"store1\":\"INT\",\"store2\":\"INT\",\"store3\":\"INT\"}}}",
|
||
"judgerAvailable": true,
|
||
"judgeType": "large",
|
||
"mysqlSchemas": [
|
||
"Create table If Not Exists Products (product_id int, store1 int, store2 int, store3 int)",
|
||
"Truncate table Products",
|
||
"insert into Products (product_id, store1, store2, store3) values ('0', '95', '100', '105')",
|
||
"insert into Products (product_id, store1, store2, store3) values ('1', '70', 'None', '80')"
|
||
],
|
||
"enableRunCode": true,
|
||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||
"book": null,
|
||
"isSubscribed": false,
|
||
"isDailyQuestion": false,
|
||
"dailyRecordStatus": null,
|
||
"editorType": "CKEDITOR",
|
||
"ugcQuestionId": null,
|
||
"style": "LEETCODE",
|
||
"exampleTestcases": "{\"headers\":{\"Products\":[\"product_id\",\"store1\",\"store2\",\"store3\"]},\"rows\":{\"Products\":[[0, 95, 100, 105], [1, 70, null, 80]]}}",
|
||
"__typename": "QuestionNode"
|
||
}
|
||
}
|
||
} |