mirror of
				https://gitee.com/coder-xiaomo/leetcode-problemset
				synced 2025-11-04 19:53:12 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			55 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<p>An element <code>x</code> of an integer array <code>arr</code> of length <code>m</code> is <strong>dominant</strong> if <code>freq(x) * 2 > m</code>, where <code>freq(x)</code> is the number of occurrences of <code>x</code> in <code>arr</code>. Note that this definition implies that <code>arr</code> can have <strong>at most one</strong> dominant element.</p>
 | 
						|
 | 
						|
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code> of length <code>n</code> with one dominant element.</p>
 | 
						|
 | 
						|
<p>You can split <code>nums</code> at an index <code>i</code> into two arrays <code>nums[0, ..., i]</code> and <code>nums[i + 1, ..., n - 1]</code>, but the split is only <strong>valid</strong> if:</p>
 | 
						|
 | 
						|
<ul>
 | 
						|
	<li><code>0 <= i < n - 1</code></li>
 | 
						|
	<li><code>nums[0, ..., i]</code>, and <code>nums[i + 1, ..., n - 1]</code> have the same dominant element.</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
<p>Here, <code>nums[i, ..., j]</code> denotes the subarray of <code>nums</code> starting at index <code>i</code> and ending at index <code>j</code>, both ends being inclusive. Particularly, if <code>j < i</code> then <code>nums[i, ..., j]</code> denotes an empty subarray.</p>
 | 
						|
 | 
						|
<p>Return <em>the <strong>minimum</strong> index of a <strong>valid split</strong></em>. If no valid split exists, return <code>-1</code>.</p>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong class="example">Example 1:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [1,2,2,2]
 | 
						|
<strong>Output:</strong> 2
 | 
						|
<strong>Explanation:</strong> We can split the array at index 2 to obtain arrays [1,2,2] and [2]. 
 | 
						|
In array [1,2,2], element 2 is dominant since it occurs twice in the array and 2 * 2 > 3. 
 | 
						|
In array [2], element 2 is dominant since it occurs once in the array and 1 * 2 > 1.
 | 
						|
Both [1,2,2] and [2] have the same dominant element as nums, so this is a valid split. 
 | 
						|
It can be shown that index 2 is the minimum index of a valid split. </pre>
 | 
						|
 | 
						|
<p><strong class="example">Example 2:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [2,1,3,1,1,1,7,1,2,1]
 | 
						|
<strong>Output:</strong> 4
 | 
						|
<strong>Explanation:</strong> We can split the array at index 4 to obtain arrays [2,1,3,1,1] and [1,7,1,2,1].
 | 
						|
In array [2,1,3,1,1], element 1 is dominant since it occurs thrice in the array and 3 * 2 > 5.
 | 
						|
In array [1,7,1,2,1], element 1 is dominant since it occurs thrice in the array and 3 * 2 > 5.
 | 
						|
Both [2,1,3,1,1] and [1,7,1,2,1] have the same dominant element as nums, so this is a valid split.
 | 
						|
It can be shown that index 4 is the minimum index of a valid split.</pre>
 | 
						|
 | 
						|
<p><strong class="example">Example 3:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [3,3,3,3,7,2,2]
 | 
						|
<strong>Output:</strong> -1
 | 
						|
<strong>Explanation:</strong> It can be shown that there is no valid split.
 | 
						|
</pre>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong>Constraints:</strong></p>
 | 
						|
 | 
						|
<ul>
 | 
						|
	<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
 | 
						|
	<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
 | 
						|
	<li><code>nums</code> has exactly one dominant element.</li>
 | 
						|
</ul>
 |