mirror of
				https://gitee.com/coder-xiaomo/leetcode-problemset
				synced 2025-11-04 11:43:12 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			33 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			33 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<p>Given 2 integers <code>n</code> and <code>start</code>. Your task is return <strong>any</strong> permutation <code>p</code> of <code>(0,1,2.....,2^n -1) </code>such that :</p>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
<ul>
 | 
						|
 | 
						|
	<li><code>p[0] = start</code></li>
 | 
						|
 | 
						|
	<li><code>p[i]</code> and <code>p[i+1]</code> differ by only one bit in their binary representation.</li>
 | 
						|
 | 
						|
	<li><code>p[0]</code> and <code>p[2^n -1]</code> must also differ by only one bit in their binary representation.</li>
 | 
						|
 | 
						|
</ul>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
<p> </p>
 | 
						|
 | 
						|
<p><strong>Example 1:</strong></p>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
<pre>
 | 
						|
 | 
						|
<strong>Input:</strong> n = 2, start = 3
 | 
						|
 | 
						|
<strong>Output:</strong> [3,2,0,1]
 | 
						|
 | 
						|
<strong>Explanation:</strong> The binary representation of the permutation is (11,10,00,01). 
 | 
						|
 | 
						|
All the adjacent element differ by one bit. Another valid permutation is [3,1,0,2]
 | 
						|
 | 
						|
</pre>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
<p><strong>Example 2:</strong></p>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
<pre>
 | 
						|
 | 
						|
<strong>Input:</strong> n = 3, start = 2
 | 
						|
 | 
						|
<strong>Output:</strong> [2,6,7,5,4,0,1,3]
 | 
						|
 | 
						|
<strong>Explanation:</strong> The binary representation of the permutation is (010,110,111,101,100,000,001,011).
 | 
						|
 | 
						|
</pre>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
<p> </p>
 | 
						|
 | 
						|
<p><strong>Constraints:</strong></p>
 | 
						|
 | 
						|
 | 
						|
 | 
						|
<ul>
 | 
						|
 | 
						|
	<li><code>1 <= n <= 16</code></li>
 | 
						|
 | 
						|
	<li><code>0 <= start < 2 ^ n</code></li>
 | 
						|
 | 
						|
</ul> |