1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/problem (English)/统计异或值为给定值的路径数目(English) [count-paths-with-the-given-xor-value].html
2025-01-09 01:30:35 +08:00

70 lines
2.8 KiB
HTML

<p>You are given a 2D integer array <code>grid</code> with size <code>m x n</code>. You are also given an integer <code>k</code>.</p>
<p>Your task is to calculate the number of paths you can take from the top-left cell <code>(0, 0)</code> to the bottom-right cell <code>(m - 1, n - 1)</code> satisfying the following <strong>constraints</strong>:</p>
<ul>
<li>You can either move to the right or down. Formally, from the cell <code>(i, j)</code> you may move to the cell <code>(i, j + 1)</code> or to the cell <code>(i + 1, j)</code> if the target cell <em>exists</em>.</li>
<li>The <code>XOR</code> of all the numbers on the path must be <strong>equal</strong> to <code>k</code>.</li>
</ul>
<p>Return the total number of such paths.</p>
<p>Since the answer can be very large, return the result <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">grid = [[2, 1, 5], [7, 10, 0], [12, 6, 4]], k = 11</span></p>
<p><strong>Output:</strong> <span class="example-io">3</span></p>
<p><strong>Explanation:</strong>&nbsp;</p>
<p>The 3 paths are:</p>
<ul>
<li><code>(0, 0) &rarr; (1, 0) &rarr; (2, 0) &rarr; (2, 1) &rarr; (2, 2)</code></li>
<li><code>(0, 0) &rarr; (1, 0) &rarr; (1, 1) &rarr; (1, 2) &rarr; (2, 2)</code></li>
<li><code>(0, 0) &rarr; (0, 1) &rarr; (1, 1) &rarr; (2, 1) &rarr; (2, 2)</code></li>
</ul>
</div>
<p><strong class="example">Example 2:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">grid = [[1, 3, 3, 3], [0, 3, 3, 2], [3, 0, 1, 1]], k = 2</span></p>
<p><strong>Output:</strong> <span class="example-io">5</span></p>
<p><strong>Explanation:</strong></p>
<p>The 5 paths are:</p>
<ul>
<li><code>(0, 0) &rarr; (1, 0) &rarr; (2, 0) &rarr; (2, 1) &rarr; (2, 2) &rarr; (2, 3)</code></li>
<li><code>(0, 0) &rarr; (1, 0) &rarr; (1, 1) &rarr; (2, 1) &rarr; (2, 2) &rarr; (2, 3)</code></li>
<li><code>(0, 0) &rarr; (1, 0) &rarr; (1, 1) &rarr; (1, 2) &rarr; (1, 3) &rarr; (2, 3)</code></li>
<li><code>(0, 0) &rarr; (0, 1) &rarr; (1, 1) &rarr; (1, 2) &rarr; (2, 2) &rarr; (2, 3)</code></li>
<li><code>(0, 0) &rarr; (0, 1) &rarr; (0, 2) &rarr; (1, 2) &rarr; (2, 2) &rarr; (2, 3)</code></li>
</ul>
</div>
<p><strong class="example">Example 3:</strong></p>
<div class="example-block">
<p><strong>Input:</strong> <span class="example-io">grid = [[1, 1, 1, 2], [3, 0, 3, 2], [3, 0, 2, 2]], k = 10</span></p>
<p><strong>Output:</strong> <span class="example-io">0</span></p>
</div>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= m == grid.length &lt;= 300</code></li>
<li><code>1 &lt;= n == grid[r].length &lt;= 300</code></li>
<li><code>0 &lt;= grid[r][c] &lt; 16</code></li>
<li><code>0 &lt;= k &lt; 16</code></li>
</ul>