mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
56 lines
2.6 KiB
HTML
56 lines
2.6 KiB
HTML
<p>You are given a <strong>0-indexed</strong> integer array <code>nums</code>, an integer <code>modulo</code>, and an integer <code>k</code>.</p>
|
|
|
|
<p>Your task is to find the count of subarrays that are <strong>interesting</strong>.</p>
|
|
|
|
<p>A <strong>subarray</strong> <code>nums[l..r]</code> is <strong>interesting</strong> if the following condition holds:</p>
|
|
|
|
<ul>
|
|
<li>Let <code>cnt</code> be the number of indices <code>i</code> in the range <code>[l, r]</code> such that <code>nums[i] % modulo == k</code>. Then, <code>cnt % modulo == k</code>.</li>
|
|
</ul>
|
|
|
|
<p>Return <em>an integer denoting the count of interesting subarrays. </em></p>
|
|
|
|
<p><span><strong>Note:</strong> A subarray is <em>a contiguous non-empty sequence of elements within an array</em>.</span></p>
|
|
|
|
<p> </p>
|
|
<p><strong class="example">Example 1:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> nums = [3,2,4], modulo = 2, k = 1
|
|
<strong>Output:</strong> 3
|
|
<strong>Explanation:</strong> In this example the interesting subarrays are:
|
|
The subarray nums[0..0] which is [3].
|
|
- There is only one index, i = 0, in the range [0, 0] that satisfies nums[i] % modulo == k.
|
|
- Hence, cnt = 1 and cnt % modulo == k.
|
|
The subarray nums[0..1] which is [3,2].
|
|
- There is only one index, i = 0, in the range [0, 1] that satisfies nums[i] % modulo == k.
|
|
- Hence, cnt = 1 and cnt % modulo == k.
|
|
The subarray nums[0..2] which is [3,2,4].
|
|
- There is only one index, i = 0, in the range [0, 2] that satisfies nums[i] % modulo == k.
|
|
- Hence, cnt = 1 and cnt % modulo == k.
|
|
It can be shown that there are no other interesting subarrays. So, the answer is 3.</pre>
|
|
|
|
<p><strong class="example">Example 2:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> nums = [3,1,9,6], modulo = 3, k = 0
|
|
<strong>Output:</strong> 2
|
|
<strong>Explanation: </strong>In this example the interesting subarrays are:
|
|
The subarray nums[0..3] which is [3,1,9,6].
|
|
- There are three indices, i = 0, 2, 3, in the range [0, 3] that satisfy nums[i] % modulo == k.
|
|
- Hence, cnt = 3 and cnt % modulo == k.
|
|
The subarray nums[1..1] which is [1].
|
|
- There is no index, i, in the range [1, 1] that satisfies nums[i] % modulo == k.
|
|
- Hence, cnt = 0 and cnt % modulo == k.
|
|
It can be shown that there are no other interesting subarrays. So, the answer is 2.</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= nums.length <= 10<sup>5 </sup></code></li>
|
|
<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>
|
|
<li><code>1 <= modulo <= 10<sup>9</sup></code></li>
|
|
<li><code>0 <= k < modulo</code></li>
|
|
</ul>
|