mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
38 lines
1.8 KiB
HTML
38 lines
1.8 KiB
HTML
<p>You are given a 2D integer array <code>tiles</code> where <code>tiles[i] = [l<sub>i</sub>, r<sub>i</sub>]</code> represents that every tile <code>j</code> in the range <code>l<sub>i</sub> <= j <= r<sub>i</sub></code> is colored white.</p>
|
|
|
|
<p>You are also given an integer <code>carpetLen</code>, the length of a single carpet that can be placed <strong>anywhere</strong>.</p>
|
|
|
|
<p>Return <em>the <strong>maximum</strong> number of white tiles that can be covered by the carpet</em>.</p>
|
|
|
|
<p> </p>
|
|
<p><strong class="example">Example 1:</strong></p>
|
|
<img alt="" src="https://assets.leetcode.com/uploads/2022/03/25/example1drawio3.png" style="width: 644px; height: 158px;" />
|
|
<pre>
|
|
<strong>Input:</strong> tiles = [[1,5],[10,11],[12,18],[20,25],[30,32]], carpetLen = 10
|
|
<strong>Output:</strong> 9
|
|
<strong>Explanation:</strong> Place the carpet starting on tile 10.
|
|
It covers 9 white tiles, so we return 9.
|
|
Note that there may be other places where the carpet covers 9 white tiles.
|
|
It can be shown that the carpet cannot cover more than 9 white tiles.
|
|
</pre>
|
|
|
|
<p><strong class="example">Example 2:</strong></p>
|
|
<img alt="" src="https://assets.leetcode.com/uploads/2022/03/24/example2drawio.png" style="width: 231px; height: 168px;" />
|
|
<pre>
|
|
<strong>Input:</strong> tiles = [[10,11],[1,1]], carpetLen = 2
|
|
<strong>Output:</strong> 2
|
|
<strong>Explanation:</strong> Place the carpet starting on tile 10.
|
|
It covers 2 white tiles, so we return 2.
|
|
</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= tiles.length <= 5 * 10<sup>4</sup></code></li>
|
|
<li><code>tiles[i].length == 2</code></li>
|
|
<li><code>1 <= l<sub>i</sub> <= r<sub>i</sub> <= 10<sup>9</sup></code></li>
|
|
<li><code>1 <= carpetLen <= 10<sup>9</sup></code></li>
|
|
<li>The <code>tiles</code> are <strong>non-overlapping</strong>.</li>
|
|
</ul>
|