mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
59 lines
4.1 KiB
JSON
59 lines
4.1 KiB
JSON
{
|
|
"data": {
|
|
"question": {
|
|
"questionId": "3066",
|
|
"questionFrontendId": "2881",
|
|
"boundTopicId": null,
|
|
"title": "Create a New Column",
|
|
"titleSlug": "create-a-new-column",
|
|
"content": "<pre>\nDataFrame <code>employees</code>\n+-------------+--------+\n| Column Name | Type. |\n+-------------+--------+\n| name | object |\n| salary | int. |\n+-------------+--------+\n</pre>\n\n<p>A company plans to provide its employees with a bonus.</p>\n\n<p>Write a solution to create a new column name <code>bonus</code> that contains the <strong>doubled values</strong> of the <code>salary</code> column.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong>\nDataFrame employees\n+---------+--------+\n| name | salary |\n+---------+--------+\n| Piper | 4548 |\n| Grace | 28150 |\n| Georgia | 1103 |\n| Willow | 6593 |\n| Finn | 74576 |\n| Thomas | 24433 |\n+---------+--------+\n<strong>Output:</strong>\n+---------+--------+--------+\n| name | salary | bonus |\n+---------+--------+--------+\n| Piper | 4548 | 9096 |\n| Grace | 28150 | 56300 |\n| Georgia | 1103 | 2206 |\n| Willow | 6593 | 13186 |\n| Finn | 74576 | 149152 |\n| Thomas | 24433 | 48866 |\n+---------+--------+--------+\n<strong>Explanation:</strong> \nA new column bonus is created by doubling the value in the column salary.</pre>\n",
|
|
"translatedTitle": null,
|
|
"translatedContent": null,
|
|
"isPaidOnly": false,
|
|
"difficulty": "Easy",
|
|
"likes": 26,
|
|
"dislikes": 4,
|
|
"isLiked": null,
|
|
"similarQuestions": "[]",
|
|
"exampleTestcases": "{\"headers\":{\"employees\":[\"name\",\"salary\"]},\"rows\":{\"employees\":[[\"Piper\",4548],[\"Grace\",28150],[\"Georgia\",1103],[\"Willow\",6593],[\"Finn\",74576],[\"Thomas\",24433]]}}",
|
|
"categoryTitle": "pandas",
|
|
"contributors": [],
|
|
"topicTags": [],
|
|
"companyTagStats": null,
|
|
"codeSnippets": [
|
|
{
|
|
"lang": "Pandas",
|
|
"langSlug": "pythondata",
|
|
"code": "import pandas as pd\n\ndef createBonusColumn(employees: pd.DataFrame) -> pd.DataFrame:\n ",
|
|
"__typename": "CodeSnippetNode"
|
|
}
|
|
],
|
|
"stats": "{\"totalAccepted\": \"12.4K\", \"totalSubmission\": \"14K\", \"totalAcceptedRaw\": 12356, \"totalSubmissionRaw\": 13959, \"acRate\": \"88.5%\"}",
|
|
"hints": [
|
|
"Consider using the `[]` brackets with the new column name at the left side of the assignment. The calculation of the value is done element-wise."
|
|
],
|
|
"solution": {
|
|
"id": "2103",
|
|
"canSeeDetail": true,
|
|
"paidOnly": false,
|
|
"hasVideoSolution": false,
|
|
"paidOnlyVideo": true,
|
|
"__typename": "ArticleNode"
|
|
},
|
|
"status": null,
|
|
"sampleTestCase": "{\"headers\":{\"employees\":[\"name\",\"salary\"]},\"rows\":{\"employees\":[[\"Piper\",4548],[\"Grace\",28150],[\"Georgia\",1103],[\"Willow\",6593],[\"Finn\",74576],[\"Thomas\",24433]]}}",
|
|
"metaData": "{\n \"pythondata\": [\n \"employees = pd.DataFrame([], columns=['name', 'salary']).astype({'name':'object', 'salary':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"createBonusColumn\",\n \"languages\": [\n \"pythondata\"\n ]\n}",
|
|
"judgerAvailable": true,
|
|
"judgeType": "large",
|
|
"mysqlSchemas": [],
|
|
"enableRunCode": true,
|
|
"enableTestMode": false,
|
|
"enableDebugger": false,
|
|
"envInfo": "{\"pythondata\": [\"Pandas\", \"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0</p>\"]}",
|
|
"libraryUrl": null,
|
|
"adminUrl": null,
|
|
"challengeQuestion": null,
|
|
"__typename": "QuestionNode"
|
|
}
|
|
}
|
|
} |