mirror of
				https://gitee.com/coder-xiaomo/leetcode-problemset
				synced 2025-11-04 19:53:12 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			55 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			2.4 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<p>You are given an <code>m x n</code> integer array <code>grid</code> where <code>grid[i][j]</code> could be:</p>
 | 
						|
 | 
						|
<ul>
 | 
						|
	<li><code>1</code> representing the starting square. There is exactly one starting square.</li>
 | 
						|
	<li><code>2</code> representing the ending square. There is exactly one ending square.</li>
 | 
						|
	<li><code>0</code> representing empty squares we can walk over.</li>
 | 
						|
	<li><code>-1</code> representing obstacles that we cannot walk over.</li>
 | 
						|
</ul>
 | 
						|
 | 
						|
<p>Return <em>the number of 4-directional walks from the starting square to the ending square, that walk over every non-obstacle square exactly once</em>.</p>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong>Example 1:</strong></p>
 | 
						|
<img alt="" src="https://assets.leetcode.com/uploads/2021/08/02/lc-unique1.jpg" style="width: 324px; height: 245px;" />
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> grid = [[1,0,0,0],[0,0,0,0],[0,0,2,-1]]
 | 
						|
<strong>Output:</strong> 2
 | 
						|
<strong>Explanation:</strong> We have the following two paths: 
 | 
						|
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2)
 | 
						|
2. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2)
 | 
						|
</pre>
 | 
						|
 | 
						|
<p><strong>Example 2:</strong></p>
 | 
						|
<img alt="" src="https://assets.leetcode.com/uploads/2021/08/02/lc-unique2.jpg" style="width: 324px; height: 245px;" />
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> grid = [[1,0,0,0],[0,0,0,0],[0,0,0,2]]
 | 
						|
<strong>Output:</strong> 4
 | 
						|
<strong>Explanation:</strong> We have the following four paths: 
 | 
						|
1. (0,0),(0,1),(0,2),(0,3),(1,3),(1,2),(1,1),(1,0),(2,0),(2,1),(2,2),(2,3)
 | 
						|
2. (0,0),(0,1),(1,1),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2),(0,3),(1,3),(2,3)
 | 
						|
3. (0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(1,1),(0,1),(0,2),(0,3),(1,3),(2,3)
 | 
						|
4. (0,0),(1,0),(2,0),(2,1),(1,1),(0,1),(0,2),(0,3),(1,3),(1,2),(2,2),(2,3)
 | 
						|
</pre>
 | 
						|
 | 
						|
<p><strong>Example 3:</strong></p>
 | 
						|
<img alt="" src="https://assets.leetcode.com/uploads/2021/08/02/lc-unique3-.jpg" style="width: 164px; height: 165px;" />
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> grid = [[0,1],[2,0]]
 | 
						|
<strong>Output:</strong> 0
 | 
						|
<strong>Explanation:</strong> There is no path that walks over every empty square exactly once.
 | 
						|
Note that the starting and ending square can be anywhere in the grid.
 | 
						|
</pre>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong>Constraints:</strong></p>
 | 
						|
 | 
						|
<ul>
 | 
						|
	<li><code>m == grid.length</code></li>
 | 
						|
	<li><code>n == grid[i].length</code></li>
 | 
						|
	<li><code>1 <= m, n <= 20</code></li>
 | 
						|
	<li><code>1 <= m * n <= 20</code></li>
 | 
						|
	<li><code>-1 <= grid[i][j] <= 2</code></li>
 | 
						|
	<li>There is exactly one starting cell and one ending cell.</li>
 | 
						|
</ul>
 |