1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 02:58:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/problem (Chinese)/找出第 K 大的异或坐标值 [find-kth-largest-xor-coordinate-value].html
2022-03-29 12:43:11 +08:00

44 lines
1.7 KiB
HTML
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p>给你一个二维矩阵 <code>matrix</code> 和一个整数 <code>k</code> ,矩阵大小为 <code>m x n</code> 由非负整数组成。</p>
<p>矩阵中坐标 <code>(a, b)</code><strong></strong> 可由对所有满足 <code>0 &lt;= i &lt;= a &lt; m</code><code>0 &lt;= j &lt;= b &lt; n</code> 的元素 <code>matrix[i][j]</code><strong>下标从 0 开始计数</strong>)执行异或运算得到。</p>
<p>请你找出 <code>matrix</code> 的所有坐标中第 <code>k</code> 大的值(<strong><code>k</code> 的值从 1 开始计数</strong>)。</p>
<p> </p>
<p><strong>示例 1</strong></p>
<pre><strong>输入:</strong>matrix = [[5,2],[1,6]], k = 1
<strong>输出:</strong>7
<strong>解释:</strong>坐标 (0,1) 的值是 5 XOR 2 = 7 ,为最大的值。</pre>
<p><strong>示例 2</strong></p>
<pre><strong>输入:</strong>matrix = [[5,2],[1,6]], k = 2
<strong>输出:</strong>5
<strong>解释:</strong>坐标 (0,0) 的值是 5 = 5 ,为第 2 大的值。</pre>
<p><strong>示例 3</strong></p>
<pre><strong>输入:</strong>matrix = [[5,2],[1,6]], k = 3
<strong>输出:</strong>4
<strong>解释:</strong>坐标 (1,0) 的值是 5 XOR 1 = 4 ,为第 3 大的值。</pre>
<p><strong>示例 4</strong></p>
<pre><strong>输入:</strong>matrix = [[5,2],[1,6]], k = 4
<strong>输出:</strong>0
<strong>解释:</strong>坐标 (1,1) 的值是 5 XOR 2 XOR 1 XOR 6 = 0 ,为第 4 大的值。</pre>
<p> </p>
<p><strong>提示:</strong></p>
<ul>
<li><code>m == matrix.length</code></li>
<li><code>n == matrix[i].length</code></li>
<li><code>1 &lt;= m, n &lt;= 1000</code></li>
<li><code>0 &lt;= matrix[i][j] &lt;= 10<sup>6</sup></code></li>
<li><code>1 &lt;= k &lt;= m * n</code></li>
</ul>