1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 02:58:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/problem (English)/到达角落需要移除障碍物的最小数目(English) [minimum-obstacle-removal-to-reach-corner].html
2022-06-10 23:34:17 +08:00

42 lines
1.9 KiB
HTML

<p>You are given a <strong>0-indexed</strong> 2D integer array <code>grid</code> of size <code>m x n</code>. Each cell has one of two values:</p>
<ul>
<li><code>0</code> represents an <strong>empty</strong> cell,</li>
<li><code>1</code> represents an <strong>obstacle</strong> that may be removed.</li>
</ul>
<p>You can move up, down, left, or right from and to an empty cell.</p>
<p>Return <em>the <strong>minimum</strong> number of <strong>obstacles</strong> to <strong>remove</strong> so you can move from the upper left corner </em><code>(0, 0)</code><em> to the lower right corner </em><code>(m - 1, n - 1)</code>.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2022/04/06/example1drawio-1.png" style="width: 605px; height: 246px;" />
<pre>
<strong>Input:</strong> grid = [[0,1,1],[1,1,0],[1,1,0]]
<strong>Output:</strong> 2
<strong>Explanation:</strong> We can remove the obstacles at (0, 1) and (0, 2) to create a path from (0, 0) to (2, 2).
It can be shown that we need to remove at least 2 obstacles, so we return 2.
Note that there may be other ways to remove 2 obstacles to create a path.
</pre>
<p><strong>Example 2:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2022/04/06/example1drawio.png" style="width: 405px; height: 246px;" />
<pre>
<strong>Input:</strong> grid = [[0,1,0,0,0],[0,1,0,1,0],[0,0,0,1,0]]
<strong>Output:</strong> 0
<strong>Explanation:</strong> We can move from (0, 0) to (2, 4) without removing any obstacles, so we return 0.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == grid.length</code></li>
<li><code>n == grid[i].length</code></li>
<li><code>1 &lt;= m, n &lt;= 10<sup>5</sup></code></li>
<li><code>2 &lt;= m * n &lt;= 10<sup>5</sup></code></li>
<li><code>grid[i][j]</code> is either <code>0</code> <strong>or</strong> <code>1</code>.</li>
<li><code>grid[0][0] == grid[m - 1][n - 1] == 0</code></li>
</ul>