mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
59 lines
4.8 KiB
JSON
59 lines
4.8 KiB
JSON
{
|
|
"data": {
|
|
"question": {
|
|
"questionId": "3071",
|
|
"questionFrontendId": "2882",
|
|
"boundTopicId": null,
|
|
"title": "Drop Duplicate Rows",
|
|
"titleSlug": "drop-duplicate-rows",
|
|
"content": "<pre>\nDataFrame customers\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| customer_id | int |\n| name | object |\n| email | object |\n+-------------+--------+\n</pre>\n\n<p>There are some duplicate rows in the DataFrame based on the <code>email</code> column.</p>\n\n<p>Write a solution to remove these duplicate rows and keep only the <strong>first</strong> occurrence.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<pre>\n<strong class=\"example\">Example 1:</strong>\n<strong>Input:</strong>\n+-------------+---------+---------------------+\n| customer_id | name | email |\n+-------------+---------+---------------------+\n| 1 | Ella | emily@example.com |\n| 2 | David | michael@example.com |\n| 3 | Zachary | sarah@example.com |\n| 4 | Alice | john@example.com |\n| 5 | Finn | john@example.com |\n| 6 | Violet | alice@example.com |\n+-------------+---------+---------------------+\n<strong>Output: </strong> \n+-------------+---------+---------------------+\n| customer_id | name | email |\n+-------------+---------+---------------------+\n| 1 | Ella | emily@example.com |\n| 2 | David | michael@example.com |\n| 3 | Zachary | sarah@example.com |\n| 4 | Alice | john@example.com |\n| 6 | Violet | alice@example.com |\n+-------------+---------+---------------------+\n<strong>Explanation:</strong>\nAlic (customer_id = 4) and Finn (customer_id = 5) both use john@example.com, so only the first occurrence of this email is retained.\n</pre>\n",
|
|
"translatedTitle": null,
|
|
"translatedContent": null,
|
|
"isPaidOnly": false,
|
|
"difficulty": "Easy",
|
|
"likes": 34,
|
|
"dislikes": 3,
|
|
"isLiked": null,
|
|
"similarQuestions": "[]",
|
|
"exampleTestcases": "{\"headers\":{\"customers\":[\"customer_id\",\"name\",\"email\"]},\"rows\":{\"customers\":[[1,\"Ella\",\"emily@example.com\"],[2,\"David\",\"michael@example.com\"],[3,\"Zachary\",\"sarah@example.com\"],[4,\"Alice\",\"john@example.com\"],[5,\"Finn\",\"john@example.com\"],[6,\"Violet\",\"alice@example.com\"]]}}",
|
|
"categoryTitle": "pandas",
|
|
"contributors": [],
|
|
"topicTags": [],
|
|
"companyTagStats": null,
|
|
"codeSnippets": [
|
|
{
|
|
"lang": "Pandas",
|
|
"langSlug": "pythondata",
|
|
"code": "import pandas as pd\n\ndef dropDuplicateEmails(customers: pd.DataFrame) -> pd.DataFrame:\n ",
|
|
"__typename": "CodeSnippetNode"
|
|
}
|
|
],
|
|
"stats": "{\"totalAccepted\": \"10.5K\", \"totalSubmission\": \"12.6K\", \"totalAcceptedRaw\": 10488, \"totalSubmissionRaw\": 12643, \"acRate\": \"83.0%\"}",
|
|
"hints": [
|
|
"Consider using a build-in function in pandas library to remove the duplicate rows based on specified data."
|
|
],
|
|
"solution": {
|
|
"id": "2114",
|
|
"canSeeDetail": true,
|
|
"paidOnly": false,
|
|
"hasVideoSolution": false,
|
|
"paidOnlyVideo": true,
|
|
"__typename": "ArticleNode"
|
|
},
|
|
"status": null,
|
|
"sampleTestCase": "{\"headers\":{\"customers\":[\"customer_id\",\"name\",\"email\"]},\"rows\":{\"customers\":[[1,\"Ella\",\"emily@example.com\"],[2,\"David\",\"michael@example.com\"],[3,\"Zachary\",\"sarah@example.com\"],[4,\"Alice\",\"john@example.com\"],[5,\"Finn\",\"john@example.com\"],[6,\"Violet\",\"alice@example.com\"]]}}",
|
|
"metaData": "{\n \"pythondata\": [\n \"customers = pd.DataFrame([], columns=['customer_id', 'name', 'email']).astype({'customer_id':'Int64', 'name':'object', 'email':'object'})\"\n ],\n \"database\": true,\n \"name\": \"dropDuplicateEmails\",\n \"languages\": [\n \"pythondata\"\n ]\n}",
|
|
"judgerAvailable": true,
|
|
"judgeType": "large",
|
|
"mysqlSchemas": [],
|
|
"enableRunCode": true,
|
|
"enableTestMode": false,
|
|
"enableDebugger": false,
|
|
"envInfo": "{\"pythondata\": [\"Pandas\", \"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0</p>\"]}",
|
|
"libraryUrl": null,
|
|
"adminUrl": null,
|
|
"challengeQuestion": null,
|
|
"__typename": "QuestionNode"
|
|
}
|
|
}
|
|
} |