1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/originData/create-a-dataframe-from-list.json
2023-12-09 19:57:46 +08:00

55 lines
4.8 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"data": {
"question": {
"questionId": "3062",
"questionFrontendId": "2877",
"categoryTitle": "pandas",
"boundTopicId": 2467481,
"title": "Create a DataFrame from List",
"titleSlug": "create-a-dataframe-from-list",
"content": "<p>Write a solution to <strong>create</strong> a DataFrame from a 2D list called <code>student_data</code>. This 2D list contains the IDs and ages of some students.</p>\n\n<p>The DataFrame should have two columns, <code>student_id</code> and <code>age</code>, and be in the same order as the original 2D list.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:\n</strong>student_data:<strong>\n</strong><code>[\n [1, 15],\n [2, 11],\n [3, 11],\n [4, 20]\n]</code>\n<strong>Output:</strong>\n+------------+-----+\n| student_id | age |\n+------------+-----+\n| 1 | 15 |\n| 2 | 11 |\n| 3 | 11 |\n| 4 | 20 |\n+------------+-----+\n<strong>Explanation:</strong>\nA DataFrame was created on top of student_data, with two columns named <code>student_id</code> and <code>age</code>.\n</pre>\n",
"translatedTitle": "从表中创建 DataFrame",
"translatedContent": "<p>编写一个解决方案,基于名为&nbsp;&nbsp;<code>student_data</code>&nbsp;的二维列表&nbsp;<b>创建 </b>一个 DataFrame 。这个二维列表包含一些学生的 ID 和年龄信息。</p>\n\n<p>DataFrame 应该有两列,&nbsp;<code>student_id</code>&nbsp;和&nbsp;<code>age</code>,并且与原始二维列表的顺序相同。</p>\n\n<p>返回结果格式如下示例所示。</p>\n\n<p>&nbsp;</p>\n\n<p><strong class=\"example\">示例 1</strong></p>\n\n<pre>\n<strong>输入:\n</strong>student_data:<strong>\n</strong><code>[\n [1, 15],\n [2, 11],\n [3, 11],\n [4, 20]\n]</code>\n<b>输出:</b>\n+------------+-----+\n| student_id | age |\n+------------+-----+\n| 1 | 15 |\n| 2 | 11 |\n| 3 | 11 |\n| 4 | 20 |\n+------------+-----+\n<b>解释:</b>\n基于 student_data 创建了一个 DataFrame包含 student_id 和 age 两列。\n</pre>\n",
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 1,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef createDataframe(student_data: List[List[int]]) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"2.5K\", \"totalSubmission\": \"3.3K\", \"totalAcceptedRaw\": 2495, \"totalSubmissionRaw\": 3268, \"acRate\": \"76.3%\"}",
"hints": [
"Consider using a built-in function in pandas library and specifying the column names within it."
],
"solution": null,
"status": null,
"sampleTestCase": "[[1,15],[2,11],[3,11],[4,20]]",
"metaData": "{\n \"name\": \"create_a_dataframe\",\n \"params\": [\n {\n \"name\": \"student_data\",\n \"type\": \"list<list<integer>>\"\n }\n ],\n \"return\": {\n \"type\": \"DataFrame\"\n },\n \"data\": true,\n \"manual\": true\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"envInfo": "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "[[1,15],[2,11],[3,11],[4,20]]",
"__typename": "QuestionNode"
}
}
}