mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
97 lines
13 KiB
JSON
97 lines
13 KiB
JSON
{
|
||
"data": {
|
||
"question": {
|
||
"questionId": "1523",
|
||
"questionFrontendId": "1393",
|
||
"categoryTitle": "Database",
|
||
"boundTopicId": 172858,
|
||
"title": "Capital Gain/Loss",
|
||
"titleSlug": "capital-gainloss",
|
||
"content": "<p>Table: <code>Stocks</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| stock_name | varchar |\n| operation | enum |\n| operation_day | int |\n| price | int |\n+---------------+---------+\n(stock_name, operation_day) is the primary key (combination of columns with unique values) for this table.\nThe operation column is an ENUM (category) of type ('Sell', 'Buy')\nEach row of this table indicates that the stock which has stock_name had an operation on the day operation_day with the price.\nIt is guaranteed that each 'Sell' operation for a stock has a corresponding 'Buy' operation in a previous day. It is also guaranteed that each 'Buy' operation for a stock has a corresponding 'Sell' operation in an upcoming day.\n</pre>\n\n<p> </p>\n\n<p>Write a solution to report the <strong>Capital gain/loss</strong> for each stock.</p>\n\n<p>The <strong>Capital gain/loss</strong> of a stock is the total gain or loss after buying and selling the stock one or many times.</p>\n\n<p>Return the result table in <strong>any order</strong>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nStocks table:\n+---------------+-----------+---------------+--------+\n| stock_name | operation | operation_day | price |\n+---------------+-----------+---------------+--------+\n| Leetcode | Buy | 1 | 1000 |\n| Corona Masks | Buy | 2 | 10 |\n| Leetcode | Sell | 5 | 9000 |\n| Handbags | Buy | 17 | 30000 |\n| Corona Masks | Sell | 3 | 1010 |\n| Corona Masks | Buy | 4 | 1000 |\n| Corona Masks | Sell | 5 | 500 |\n| Corona Masks | Buy | 6 | 1000 |\n| Handbags | Sell | 29 | 7000 |\n| Corona Masks | Sell | 10 | 10000 |\n+---------------+-----------+---------------+--------+\n<strong>Output:</strong> \n+---------------+-------------------+\n| stock_name | capital_gain_loss |\n+---------------+-------------------+\n| Corona Masks | 9500 |\n| Leetcode | 8000 |\n| Handbags | -23000 |\n+---------------+-------------------+\n<strong>Explanation:</strong> \nLeetcode stock was bought at day 1 for 1000$ and was sold at day 5 for 9000$. Capital gain = 9000 - 1000 = 8000$.\nHandbags stock was bought at day 17 for 30000$ and was sold at day 29 for 7000$. Capital loss = 7000 - 30000 = -23000$.\nCorona Masks stock was bought at day 1 for 10$ and was sold at day 3 for 1010$. It was bought again at day 4 for 1000$ and was sold at day 5 for 500$. At last, it was bought at day 6 for 1000$ and was sold at day 10 for 10000$. Capital gain/loss is the sum of capital gains/losses for each ('Buy' --> 'Sell') operation = (1010 - 10) + (500 - 1000) + (10000 - 1000) = 1000 - 500 + 9000 = 9500$.\n</pre>\n",
|
||
"translatedTitle": "股票的资本损益",
|
||
"translatedContent": "<p><code>Stocks</code> 表:</p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| stock_name | varchar |\n| operation | enum |\n| operation_day | int |\n| price | int |\n+---------------+---------+\n(stock_name, day) 是这张表的主键(具有唯一值的列的组合)\noperation 列使用的是一种枚举类型,包括:('Sell','Buy')\n此表的每一行代表了名为 stock_name 的某支股票在 operation_day 这一天的操作价格。\n此表可以保证,股票的每个“卖出”操作在前一天都有相应的“买入”操作。并且,股票的每个“买入”操作在即将到来的一天都有相应的“卖出”操作。\n</pre>\n\n<p> </p>\n\n<p>编写解决方案报告每只股票的 <strong>资本损益</strong>。</p>\n\n<p>股票的 <strong>资本利得/损失 </strong>是指一次或多次买卖该股票后的总收益或损失。</p>\n\n<p>以 <strong>任意顺序</strong> 返回结果表。</p>\n\n<p>结果格式如下所示。</p>\n\n<p> </p>\n\n<p><strong>示例 1:</strong></p>\n\n<pre>\n<code><strong>输入:</strong>\nStocks</code> 表:\n+---------------+-----------+---------------+--------+\n| stock_name | operation | operation_day | price |\n+---------------+-----------+---------------+--------+\n| Leetcode | Buy | 1 | 1000 |\n| Corona Masks | Buy | 2 | 10 |\n| Leetcode | Sell | 5 | 9000 |\n| Handbags | Buy | 17 | 30000 |\n| Corona Masks | Sell | 3 | 1010 |\n| Corona Masks | Buy | 4 | 1000 |\n| Corona Masks | Sell | 5 | 500 |\n| Corona Masks | Buy | 6 | 1000 |\n| Handbags | Sell | 29 | 7000 |\n| Corona Masks | Sell | 10 | 10000 |\n+---------------+-----------+---------------+--------+\n<strong>输出:</strong>\n+---------------+-------------------+\n| stock_name | capital_gain_loss |\n+---------------+-------------------+\n| Corona Masks | 9500 |\n| Leetcode | 8000 |\n| Handbags | -23000 |\n+---------------+-------------------+\n<strong>解释:</strong>\nLeetcode 股票在第一天以1000美元的价格买入,在第五天以9000美元的价格卖出。资本收益=9000-1000=8000美元。\nHandbags 股票在第17天以30000美元的价格买入,在第29天以7000美元的价格卖出。资本损失=7000-30000=-23000美元。\nCorona Masks 股票在第1天以10美元的价格买入,在第3天以1010美元的价格卖出。在第4天以1000美元的价格再次购买,在第5天以500美元的价格出售。最后,它在第6天以1000美元的价格被买走,在第10天以10000美元的价格被卖掉。资本损益是每次(’Buy'->'Sell')操作资本收益或损失的和=(1010-10)+(500-1000)+(10000-1000)=1000-500+9000=9500美元。\n</pre>\n",
|
||
"isPaidOnly": false,
|
||
"difficulty": "Medium",
|
||
"likes": 79,
|
||
"dislikes": 0,
|
||
"isLiked": null,
|
||
"similarQuestions": "[]",
|
||
"contributors": [],
|
||
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
|
||
"topicTags": [
|
||
{
|
||
"name": "Database",
|
||
"slug": "database",
|
||
"translatedName": "数据库",
|
||
"__typename": "TopicTagNode"
|
||
}
|
||
],
|
||
"companyTagStats": null,
|
||
"codeSnippets": [
|
||
{
|
||
"lang": "MySQL",
|
||
"langSlug": "mysql",
|
||
"code": "# Write your MySQL query statement below",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "MS SQL Server",
|
||
"langSlug": "mssql",
|
||
"code": "/* Write your T-SQL query statement below */",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Oracle",
|
||
"langSlug": "oraclesql",
|
||
"code": "/* Write your PL/SQL query statement below */",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Pandas",
|
||
"langSlug": "pythondata",
|
||
"code": "import pandas as pd\n\ndef capital_gainloss(stocks: pd.DataFrame) -> pd.DataFrame:\n ",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "PostgreSQL",
|
||
"langSlug": "postgresql",
|
||
"code": "-- Write your PostgreSQL query statement below",
|
||
"__typename": "CodeSnippetNode"
|
||
}
|
||
],
|
||
"stats": "{\"totalAccepted\": \"33.7K\", \"totalSubmission\": \"40.4K\", \"totalAcceptedRaw\": 33685, \"totalSubmissionRaw\": 40377, \"acRate\": \"83.4%\"}",
|
||
"hints": [],
|
||
"solution": null,
|
||
"status": null,
|
||
"sampleTestCase": "{\"headers\":{\"Stocks\":[\"stock_name\",\"operation\",\"operation_day\",\"price\"]},\"rows\":{\"Stocks\":[[\"Leetcode\",\"Buy\",1,1000],[\"Corona Masks\",\"Buy\",2,10],[\"Leetcode\",\"Sell\",5,9000],[\"Handbags\",\"Buy\",17,30000],[\"Corona Masks\",\"Sell\",3,1010],[\"Corona Masks\",\"Buy\",4,1000],[\"Corona Masks\",\"Sell\",5,500],[\"Corona Masks\",\"Buy\",6,1000],[\"Handbags\",\"Sell\",29,7000],[\"Corona Masks\",\"Sell\",10,10000]]}}",
|
||
"metaData": "{\"mysql\":[\"Create Table If Not Exists Stocks (stock_name varchar(15), operation ENUM('Sell', 'Buy'), operation_day int, price int)\"],\"mssql\":[\"Create Table Stocks (stock_name varchar(15), operation VARCHAR(10) NOT NULL CHECK (operation IN ('Sell', 'Buy')), operation_day int, price int)\"],\"oraclesql\":[\"Create Table Stocks (stock_name varchar(15), operation VARCHAR(10) NOT NULL CHECK (operation IN ('Sell', 'Buy')), operation_day int, price int)\"],\"database\":true,\"name\":\"capital_gainloss\",\"pythondata\":[\"Stocks = pd.DataFrame([], columns=['stock_name', 'operation', 'operation_day', 'price']).astype({'stock_name':'object', 'operation':'object', 'operation_day':'Int64', 'price':'Int64'})\"],\"postgresql\":[\"Create Table If Not Exists Stocks (stock_name varchar(15), operation VARCHAR(30) CHECK (operation IN ('Sell', 'Buy')), operation_day int, price int)\\n\"],\"database_schema\":{\"Stocks\":{\"stock_name\":\"VARCHAR(15)\",\"operation\":\"ENUM('Sell', 'Buy')\",\"operation_day\":\"INT\",\"price\":\"INT\"}}}",
|
||
"judgerAvailable": true,
|
||
"judgeType": "large",
|
||
"mysqlSchemas": [
|
||
"Create Table If Not Exists Stocks (stock_name varchar(15), operation ENUM('Sell', 'Buy'), operation_day int, price int)",
|
||
"Truncate table Stocks",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Leetcode', 'Buy', '1', '1000')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Corona Masks', 'Buy', '2', '10')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Leetcode', 'Sell', '5', '9000')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Handbags', 'Buy', '17', '30000')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Corona Masks', 'Sell', '3', '1010')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Corona Masks', 'Buy', '4', '1000')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Corona Masks', 'Sell', '5', '500')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Corona Masks', 'Buy', '6', '1000')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Handbags', 'Sell', '29', '7000')",
|
||
"insert into Stocks (stock_name, operation, operation_day, price) values ('Corona Masks', 'Sell', '10', '10000')"
|
||
],
|
||
"enableRunCode": true,
|
||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||
"book": null,
|
||
"isSubscribed": false,
|
||
"isDailyQuestion": false,
|
||
"dailyRecordStatus": null,
|
||
"editorType": "CKEDITOR",
|
||
"ugcQuestionId": null,
|
||
"style": "LEETCODE",
|
||
"exampleTestcases": "{\"headers\":{\"Stocks\":[\"stock_name\",\"operation\",\"operation_day\",\"price\"]},\"rows\":{\"Stocks\":[[\"Leetcode\",\"Buy\",1,1000],[\"Corona Masks\",\"Buy\",2,10],[\"Leetcode\",\"Sell\",5,9000],[\"Handbags\",\"Buy\",17,30000],[\"Corona Masks\",\"Sell\",3,1010],[\"Corona Masks\",\"Buy\",4,1000],[\"Corona Masks\",\"Sell\",5,500],[\"Corona Masks\",\"Buy\",6,1000],[\"Handbags\",\"Sell\",29,7000],[\"Corona Masks\",\"Sell\",10,10000]]}}",
|
||
"__typename": "QuestionNode"
|
||
}
|
||
}
|
||
} |