1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-27 02:30:28 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/problem (Chinese)/并行课程 II [parallel-courses-ii].html
2022-03-29 12:43:11 +08:00

47 lines
2.5 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p>给你一个整数&nbsp;<code>n</code>&nbsp;表示某所大学里课程的数目,编号为&nbsp;<code>1</code>&nbsp;&nbsp;<code>n</code>&nbsp;,数组&nbsp;<code>dependencies</code>&nbsp;中,&nbsp;<code>dependencies[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>&nbsp; 表示一个先修课的关系,也就是课程&nbsp;<code>x<sub>i</sub></code>&nbsp;必须在课程&nbsp;<code>y<sub>i</sub></code><sub>&nbsp;</sub>之前上。同时你还有一个整数&nbsp;<code>k</code>&nbsp;</p>
<p>在一个学期中,你 <strong>最多</strong>&nbsp;可以同时上 <code>k</code>&nbsp;门课,前提是这些课的先修课在之前的学期里已经上过了。</p>
<p>请你返回上完所有课最少需要多少个学期。题目保证一定存在一种上完所有课的方式。</p>
<p>&nbsp;</p>
<p><strong>示例 1</strong></p>
<p><strong><img alt="" src="https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2020/06/27/leetcode_parallel_courses_1.png" style="height: 164px; width: 300px;"></strong></p>
<pre><strong>输入:</strong>n = 4, dependencies = [[2,1],[3,1],[1,4]], k = 2
<strong>输出:</strong>3
<strong>解释:</strong>上图展示了题目输入的图。在第一个学期中,我们可以上课程 2 和课程 3 。然后第二个学期上课程 1 ,第三个学期上课程 4 。
</pre>
<p><strong>示例 2</strong></p>
<p><strong><img alt="" src="https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2020/06/27/leetcode_parallel_courses_2.png" style="height: 234px; width: 300px;"></strong></p>
<pre><strong>输入:</strong>n = 5, dependencies = [[2,1],[3,1],[4,1],[1,5]], k = 2
<strong>输出:</strong>4
<strong>解释:</strong>上图展示了题目输入的图。一个最优方案是:第一学期上课程 2 和 3第二学期上课程 4 ,第三学期上课程 1 ,第四学期上课程 5 。
</pre>
<p><strong>示例 3</strong></p>
<pre><strong>输入:</strong>n = 11, dependencies = [], k = 2
<strong>输出:</strong>6
</pre>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 15</code></li>
<li><code>1 &lt;= k &lt;= n</code></li>
<li><code>0 &lt;=&nbsp;dependencies.length &lt;= n * (n-1) / 2</code></li>
<li><code>dependencies[i].length == 2</code></li>
<li><code>1 &lt;= x<sub>i</sub>, y<sub>i</sub>&nbsp;&lt;= n</code></li>
<li><code>x<sub>i</sub> != y<sub>i</sub></code></li>
<li>所有先修关系都是不同的,也就是说&nbsp;<code>dependencies[i] != dependencies[j]</code>&nbsp;</li>
<li>题目输入的图是个有向无环图。</li>
</ul>