1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
2022-05-02 23:44:12 +08:00

189 lines
24 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"data": {
"question": {
"questionId": "204",
"questionFrontendId": "204",
"categoryTitle": "Algorithms",
"boundTopicId": 1630,
"title": "Count Primes",
"titleSlug": "count-primes",
"content": "<p>Given an integer <code>n</code>, return <em>the number of prime numbers that are strictly less than</em> <code>n</code>.</p>\n\n<p>&nbsp;</p>\n<p><strong>Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> n = 10\n<strong>Output:</strong> 4\n<strong>Explanation:</strong> There are 4 prime numbers less than 10, they are 2, 3, 5, 7.\n</pre>\n\n<p><strong>Example 2:</strong></p>\n\n<pre>\n<strong>Input:</strong> n = 0\n<strong>Output:</strong> 0\n</pre>\n\n<p><strong>Example 3:</strong></p>\n\n<pre>\n<strong>Input:</strong> n = 1\n<strong>Output:</strong> 0\n</pre>\n\n<p>&nbsp;</p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>0 &lt;= n &lt;= 5 * 10<sup>6</sup></code></li>\n</ul>\n",
"translatedTitle": "计数质数",
"translatedContent": "<p>给定整数 <code>n</code> ,返回 <em>所有小于非负整数&nbsp;<code>n</code>&nbsp;的质数的数量</em> 。</p>\n\n<p>&nbsp;</p>\n\n<p><strong>示例 1</strong></p>\n\n<pre>\n<strong>输入:</strong>n = 10\n<strong>输出:</strong>4\n<strong>解释:</strong>小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。\n</pre>\n\n<p><strong>示例 2</strong></p>\n\n<pre>\n<strong>输入:</strong>n = 0\n<strong>输出:</strong>0\n</pre>\n\n<p><strong>示例 3</strong></p>\n\n<pre>\n<strong>输入:</strong>n = 1\n<strong>输出</strong>0\n</pre>\n\n<p>&nbsp;</p>\n\n<p><strong>提示:</strong></p>\n\n<ul>\n\t<li><code>0 &lt;= n &lt;= 5 * 10<sup>6</sup></code></li>\n</ul>\n",
"isPaidOnly": false,
"difficulty": "Medium",
"likes": 875,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[{\"title\": \"Ugly Number\", \"titleSlug\": \"ugly-number\", \"difficulty\": \"Easy\", \"translatedTitle\": \"\\u4e11\\u6570\"}, {\"title\": \"Ugly Number II\", \"titleSlug\": \"ugly-number-ii\", \"difficulty\": \"Medium\", \"translatedTitle\": \"\\u4e11\\u6570 II\"}, {\"title\": \"Perfect Squares\", \"titleSlug\": \"perfect-squares\", \"difficulty\": \"Medium\", \"translatedTitle\": \"\\u5b8c\\u5168\\u5e73\\u65b9\\u6570\"}]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": true, \"java\": true, \"python\": true, \"python3\": true, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"ruby\": false, \"bash\": false, \"swift\": false, \"golang\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"kotlin\": false, \"rust\": false, \"php\": false, \"typescript\": false, \"racket\": false, \"erlang\": false, \"elixir\": false}",
"topicTags": [
{
"name": "Array",
"slug": "array",
"translatedName": "数组",
"__typename": "TopicTagNode"
},
{
"name": "Math",
"slug": "math",
"translatedName": "数学",
"__typename": "TopicTagNode"
},
{
"name": "Enumeration",
"slug": "enumeration",
"translatedName": "枚举",
"__typename": "TopicTagNode"
},
{
"name": "Number Theory",
"slug": "number-theory",
"translatedName": "数论",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "C++",
"langSlug": "cpp",
"code": "class Solution {\npublic:\n int countPrimes(int n) {\n\n }\n};",
"__typename": "CodeSnippetNode"
},
{
"lang": "Java",
"langSlug": "java",
"code": "class Solution {\n public int countPrimes(int n) {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Python",
"langSlug": "python",
"code": "class Solution(object):\n def countPrimes(self, n):\n \"\"\"\n :type n: int\n :rtype: int\n \"\"\"",
"__typename": "CodeSnippetNode"
},
{
"lang": "Python3",
"langSlug": "python3",
"code": "class Solution:\n def countPrimes(self, n: int) -> int:",
"__typename": "CodeSnippetNode"
},
{
"lang": "C",
"langSlug": "c",
"code": "\n\nint countPrimes(int n){\n\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "C#",
"langSlug": "csharp",
"code": "public class Solution {\n public int CountPrimes(int n) {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "JavaScript",
"langSlug": "javascript",
"code": "/**\n * @param {number} n\n * @return {number}\n */\nvar countPrimes = function(n) {\n\n};",
"__typename": "CodeSnippetNode"
},
{
"lang": "Ruby",
"langSlug": "ruby",
"code": "# @param {Integer} n\n# @return {Integer}\ndef count_primes(n)\n\nend",
"__typename": "CodeSnippetNode"
},
{
"lang": "Swift",
"langSlug": "swift",
"code": "class Solution {\n func countPrimes(_ n: Int) -> Int {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Go",
"langSlug": "golang",
"code": "func countPrimes(n int) int {\n\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Scala",
"langSlug": "scala",
"code": "object Solution {\n def countPrimes(n: Int): Int = {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Kotlin",
"langSlug": "kotlin",
"code": "class Solution {\n fun countPrimes(n: Int): Int {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Rust",
"langSlug": "rust",
"code": "impl Solution {\n pub fn count_primes(n: i32) -> i32 {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "PHP",
"langSlug": "php",
"code": "class Solution {\n\n /**\n * @param Integer $n\n * @return Integer\n */\n function countPrimes($n) {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "TypeScript",
"langSlug": "typescript",
"code": "function countPrimes(n: number): number {\n\n};",
"__typename": "CodeSnippetNode"
},
{
"lang": "Racket",
"langSlug": "racket",
"code": "(define/contract (count-primes n)\n (-> exact-integer? exact-integer?)\n\n )",
"__typename": "CodeSnippetNode"
},
{
"lang": "Erlang",
"langSlug": "erlang",
"code": "-spec count_primes(N :: integer()) -> integer().\ncount_primes(N) ->\n .",
"__typename": "CodeSnippetNode"
},
{
"lang": "Elixir",
"langSlug": "elixir",
"code": "defmodule Solution do\n @spec count_primes(n :: integer) :: integer\n def count_primes(n) do\n\n end\nend",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"198.7K\", \"totalSubmission\": \"529.7K\", \"totalAcceptedRaw\": 198708, \"totalSubmissionRaw\": 529721, \"acRate\": \"37.5%\"}",
"hints": [
"<p>Let's start with a <i>isPrime</i> function. To determine if a number is prime, we need to check if it is not divisible by any number less than <i>n</i>. The runtime complexity of <i>isPrime</i> function would be O(<i>n</i>) and hence counting the total prime numbers up to <i>n</i> would be O(<i>n</i><sup>2</sup>). Could we do better?</p>",
"<p>As we know the number must not be divisible by any number > <i>n</i> / 2, we can immediately cut the total iterations half by dividing only up to <i>n</i> / 2. Could we still do better?</p>",
"<p>Let's write down all of 12's factors:</p>\r\n<pre>\r\n2 × 6 = 12\r\n3 × 4 = 12\r\n4 × 3 = 12\r\n6 × 2 = 12\r\n</pre>\r\n\r\n<p>As you can see, calculations of 4 × 3 and 6 × 2 are not necessary. Therefore, we only need to consider factors up to &radic;<i>n</i> because, if <i>n</i> is divisible by some number <i>p</i>, then <i>n</i> = <i>p</i> × <i>q</i> and since <i>p</i> &le; <i>q</i>, we could derive that <i>p</i> &le; &radic;<i>n</i>.</p>\r\n\r\n<p>Our total runtime has now improved to O(<i>n</i><sup>1.5</sup>), which is slightly better. Is there a faster approach?</p>\r\n\r\n<pre>\r\npublic int countPrimes(int n) {\r\n int count = 0;\r\n for (int i = 1; i < n; i++) {\r\n if (isPrime(i)) count++;\r\n }\r\n return count;\r\n}\r\n\r\nprivate boolean isPrime(int num) {\r\n if (num <= 1) return false;\r\n // Loop's ending condition is i * i <= num instead of i <= sqrt(num)\r\n // to avoid repeatedly calling an expensive function sqrt().\r\n for (int i = 2; i * i <= num; i++) {\r\n if (num % i == 0) return false;\r\n }\r\n return true;\r\n}\r\n</pre>",
"<p>The <a href=\"http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes\" target=\"_blank\">Sieve of Eratosthenes</a> is one of the most efficient ways to find all prime numbers up to <i>n</i>. But don't let that name scare you, I promise that the concept is surprisingly simple.</p>\r\n\r\n<p>\r\n<img src=\"/static/images/solutions/Sieve_of_Eratosthenes_animation.gif\" /><br />\r\n<small>Sieve of Eratosthenes: algorithm steps for primes below 121. \"<a href=\"http://commons.wikimedia.org/wiki/File:Sieve_of_Eratosthenes_animation.gif\" target=\"_blank\">Sieve of Eratosthenes Animation</a>\" by <a href=\"http://de.wikipedia.org/wiki/Benutzer:SKopp\" target=\"_blank\">SKopp</a> is licensed under <a href=\"http://creativecommons.org/licenses/by/2.0/\" target=\"_blank\">CC BY 2.0</a>.</small>\r\n</p>\r\n\r\n<p>We start off with a table of <i>n</i> numbers. Let's look at the first number, 2. We know all multiples of 2 must not be primes, so we mark them off as non-primes. Then we look at the next number, 3. Similarly, all multiples of 3 such as 3 × 2 = 6, 3 × 3 = 9, ... must not be primes, so we mark them off as well. Now we look at the next number, 4, which was already marked off. What does this tell you? Should you mark off all multiples of 4 as well?</p>",
"<p>4 is not a prime because it is divisible by 2, which means all multiples of 4 must also be divisible by 2 and were already marked off. So we can skip 4 immediately and go to the next number, 5. Now, all multiples of 5 such as 5 × 2 = 10, 5 × 3 = 15, 5 × 4 = 20, 5 × 5 = 25, ... can be marked off. There is a slight optimization here, we do not need to start from 5 × 2 = 10. Where should we start marking off?</p>",
"<p>In fact, we can mark off multiples of 5 starting at 5 × 5 = 25, because 5 × 2 = 10 was already marked off by multiple of 2, similarly 5 × 3 = 15 was already marked off by multiple of 3. Therefore, if the current number is <i>p</i>, we can always mark off multiples of <i>p</i> starting at <i>p</i><sup>2</sup>, then in increments of <i>p</i>: <i>p</i><sup>2</sup> + <i>p</i>, <i>p</i><sup>2</sup> + 2<i>p</i>, ... Now what should be the terminating loop condition?</p>",
"<p>It is easy to say that the terminating loop condition is <i>p</i> < <i>n</i>, which is certainly correct but not efficient. Do you still remember <i>Hint #3</i>?</p>",
"<p>Yes, the terminating loop condition can be <i>p</i> < &radic;<i>n</i>, as all non-primes &ge; &radic;<i>n</i> must have already been marked off. When the loop terminates, all the numbers in the table that are non-marked are prime.</p>\r\n\r\n<p>The Sieve of Eratosthenes uses an extra O(<i>n</i>) memory and its runtime complexity is O(<i>n</i> log log <i>n</i>). For the more mathematically inclined readers, you can read more about its algorithm complexity on <a href=\"http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes#Algorithm_complexity\" target=\"_blank\">Wikipedia</a>.</p>\r\n\r\n<pre>\r\npublic int countPrimes(int n) {\r\n boolean[] isPrime = new boolean[n];\r\n for (int i = 2; i < n; i++) {\r\n isPrime[i] = true;\r\n }\r\n // Loop's ending condition is i * i < n instead of i < sqrt(n)\r\n // to avoid repeatedly calling an expensive function sqrt().\r\n for (int i = 2; i * i < n; i++) {\r\n if (!isPrime[i]) continue;\r\n for (int j = i * i; j < n; j += i) {\r\n isPrime[j] = false;\r\n }\r\n }\r\n int count = 0;\r\n for (int i = 2; i < n; i++) {\r\n if (isPrime[i]) count++;\r\n }\r\n return count;\r\n}\r\n</pre>"
],
"solution": null,
"status": null,
"sampleTestCase": "10",
"metaData": "{\r\n \"name\": \"countPrimes\",\r\n \"params\": [\r\n {\r\n \"name\": \"n\",\r\n \"type\": \"integer\"\r\n }\r\n ],\r\n \"return\": {\r\n \"type\": \"integer\"\r\n }\r\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"envInfo": "{\"cpp\":[\"C++\",\"<p>\\u7248\\u672c\\uff1a<code>clang 11<\\/code> \\u91c7\\u7528\\u6700\\u65b0C++ 17\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n<p>\\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528<code>-O2<\\/code>\\u7ea7\\u4f18\\u5316\\u3002<a href=\\\"https:\\/\\/github.com\\/google\\/sanitizers\\/wiki\\/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b<code>out-of-bounds<\\/code>\\u548c<code>use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\"<p>\\u7248\\u672c\\uff1a<code>OpenJDK 17<\\/code>\\u3002\\u53ef\\u4ee5\\u4f7f\\u7528Java 8\\u7684\\u7279\\u6027\\u4f8b\\u5982\\uff0clambda expressions \\u548c stream API\\u3002<\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n<p>\\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\"<p>\\u7248\\u672c\\uff1a <code>Python 2.7.12<\\/code><\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1a<a href=\\\"https:\\/\\/docs.python.org\\/2\\/library\\/array.html\\\" target=\\\"_blank\\\">array<\\/a>, <a href=\\\"https:\\/\\/docs.python.org\\/2\\/library\\/bisect.html\\\" target=\\\"_blank\\\">bisect<\\/a>, <a href=\\\"https:\\/\\/docs.python.org\\/2\\/library\\/collections.html\\\" target=\\\"_blank\\\">collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n<p>\\u6ce8\\u610f Python 2.7 <a href=\\\"https:\\/\\/www.python.org\\/dev\\/peps\\/pep-0373\\/\\\" target=\\\"_blank\\\">\\u5c06\\u57282020\\u5e74\\u540e\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"c\":[\"C\",\"<p>\\u7248\\u672c\\uff1a<code>GCC 8.2<\\/code>\\uff0c\\u91c7\\u7528GNU99\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n<p>\\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528<code>-O1<\\/code>\\u7ea7\\u4f18\\u5316\\u3002 <a href=\\\"https:\\/\\/github.com\\/google\\/sanitizers\\/wiki\\/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer<\\/a>\\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b<code>out-of-bounds<\\/code>\\u548c<code>use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n<p>\\u5982\\u60f3\\u4f7f\\u7528\\u54c8\\u5e0c\\u8868\\u8fd0\\u7b97, \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 <a href=\\\"https:\\/\\/troydhanson.github.io\\/uthash\\/\\\" target=\\\"_blank\\\">uthash<\\/a>\\u3002 \\\"uthash.h\\\"\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5bfc\\u5165\\u3002\\u8bf7\\u770b\\u5982\\u4e0b\\u793a\\u4f8b:<\\/p>\\r\\n\\r\\n<p><b>1. \\u5f80\\u54c8\\u5e0c\\u8868\\u4e2d\\u6dfb\\u52a0\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; \\/* we'll use this field as the key *\\/\\r\\n char name[10];\\r\\n UT_hash_handle hh; \\/* makes this structure hashable *\\/\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n<p><b>2. \\u5728\\u54c8\\u5e0c\\u8868\\u4e2d\\u67e5\\u627e\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n<p><b>3. \\u4ece\\u54c8\\u5e0c\\u8868\\u4e2d\\u5220\\u9664\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\"],\"csharp\":[\"C#\",\"<p><a href=\\\"https:\\/\\/docs.microsoft.com\\/en-us\\/dotnet\\/csharp\\/whats-new\\/csharp-9\\\" target=\\\"_blank\\\">C# 10<\\/a> \\u8fd0\\u884c\\u5728 .NET 6 \\u4e0a<\\/p>\\r\\n\\r\\n<p>\\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u7f16\\u8bd1\\u65f6\\u9ed8\\u8ba4\\u5f00\\u542f\\u4e86debug\\u6807\\u8bb0(<code>\\/debug:pdbonly<\\/code>)\\u3002<\\/p>\"],\"javascript\":[\"JavaScript\",\"<p>\\u7248\\u672c\\uff1a<code>Node.js 16.13.2<\\/code><\\/p>\\r\\n\\r\\n<p>\\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a <code>--harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f <a href=\\\"http:\\/\\/node.green\\/\\\" target=\\\"_blank\\\">\\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n<p><a href=\\\"https:\\/\\/lodash.com\\\" target=\\\"_blank\\\">lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n<p> \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 <a href=\\\"https:\\/\\/github.com\\/datastructures-js\\/priority-queue\\\" target=\\\"_blank\\\"> datastructures-js\\/priority-queue<\\/a> \\u548c <a href=\\\"https:\\/\\/github.com\\/datastructures-js\\/queue\\\" target=\\\"_blank\\\"> datastructures-js\\/queue<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\"<p>\\u4f7f\\u7528<code>Ruby 3.1<\\/code>\\u6267\\u884c<\\/p>\\r\\n\\r\\n<p>\\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\"<p>\\u7248\\u672c\\uff1a<code>Swift 5.5.2<\\/code><\\/p>\\r\\n\\r\\n<p>\\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 <a href=\\\"https:\\/\\/swift.org\\/download\\/\\\" target=\\\"_blank\\\">Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\"<p>\\u7248\\u672c\\uff1a<code>Go 1.17<\\/code><\\/p>\\r\\n\\r\\n<p>\\u652f\\u6301 <a href=\\\"https:\\/\\/godoc.org\\/github.com\\/emirpasic\\/gods\\\" target=\\\"_blank\\\">https:\\/\\/godoc.org\\/github.com\\/emirpasic\\/gods<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\"<p>\\u7248\\u672c\\uff1a<code>Python 3.10<\\/code><\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982<a href=\\\"https:\\/\\/docs.python.org\\/3\\/library\\/array.html\\\" target=\\\"_blank\\\">array<\\/a>, <a href=\\\"https:\\/\\/docs.python.org\\/3\\/library\\/bisect.html\\\" target=\\\"_blank\\\">bisect<\\/a>, <a href=\\\"https:\\/\\/docs.python.org\\/3\\/library\\/collections.html\\\" target=\\\"_blank\\\">collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n<p>\\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 <a href=\\\"http:\\/\\/www.grantjenks.com\\/docs\\/sortedcontainers\\/\\\" target=\\\"_blank\\\">sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\"<p>\\u7248\\u672c\\uff1a<code>Scala 2.13<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"<p>\\u7248\\u672c\\uff1a<code>Kotlin 1.3.10<\\/code><\\/p>\"],\"rust\":[\"Rust\",\"<p>\\u7248\\u672c\\uff1a<code>rust 1.58.1<\\/code><\\/p>\\r\\n\\r\\n<p>\\u652f\\u6301 crates.io \\u7684 <a href=\\\"https:\\/\\/crates.io\\/crates\\/rand\\\" target=\\\"_blank\\\">rand<\\/a><\\/p>\"],\"php\":[\"PHP\",\"<p><code>PHP 8.1<\\/code>.<\\/p>\\r\\n\\r\\n<p>With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\"<p>TypeScript 4.5.4<\\/p>\\r\\n\\r\\n<p>Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2020<\\/p>\"],\"racket\":[\"Racket\",\"<p><a href=\\\"https:\\/\\/docs.racket-lang.org\\/guide\\/performance.html#%28tech._c%29\\\" target=\\\"_blank\\\">Racket CS<\\/a> v8.3<\\/p>\\r\\n\\r\\n<p>\\u4f7f\\u7528 #lang racket<\\/p>\\r\\n\\r\\n<p>\\u5df2\\u9884\\u5148 (require data\\/gvector data\\/queue data\\/order data\\/heap). \\u82e5\\u9700\\u4f7f\\u7528\\u5176\\u5b83\\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u53ef\\u81ea\\u884c require\\u3002<\\/p>\"],\"erlang\":[\"Erlang\",\"Erlang\\/OTP 24.2\"],\"elixir\":[\"Elixir\",\"Elixir 1.13.0 with Erlang\\/OTP 24.2\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "10\n0\n1",
"__typename": "QuestionNode"
}
}
}