mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
29 lines
1.3 KiB
HTML
29 lines
1.3 KiB
HTML
<p>The <strong>n-queens</strong> puzzle is the problem of placing <code>n</code> queens on an <code>n x n</code> chessboard such that no two queens attack each other.</p>
|
|
|
|
<p>Given an integer <code>n</code>, return <em>all distinct solutions to the <strong>n-queens puzzle</strong></em>. You may return the answer in <strong>any order</strong>.</p>
|
|
|
|
<p>Each solution contains a distinct board configuration of the n-queens' placement, where <code>'Q'</code> and <code>'.'</code> both indicate a queen and an empty space, respectively.</p>
|
|
|
|
<p> </p>
|
|
<p><strong class="example">Example 1:</strong></p>
|
|
<img alt="" src="https://assets.leetcode.com/uploads/2020/11/13/queens.jpg" style="width: 600px; height: 268px;" />
|
|
<pre>
|
|
<strong>Input:</strong> n = 4
|
|
<strong>Output:</strong> [[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
|
|
<strong>Explanation:</strong> There exist two distinct solutions to the 4-queens puzzle as shown above
|
|
</pre>
|
|
|
|
<p><strong class="example">Example 2:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> n = 1
|
|
<strong>Output:</strong> [["Q"]]
|
|
</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= n <= 9</code></li>
|
|
</ul>
|