mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
43 lines
1.8 KiB
HTML
43 lines
1.8 KiB
HTML
<p>There are <code>n</code> uniquely-sized sticks whose lengths are integers from <code>1</code> to <code>n</code>. You want to arrange the sticks such that <strong>exactly</strong> <code>k</code> sticks are <strong>visible</strong> from the left. A stick is <strong>visible</strong> from the left if there are no <strong>longer</strong> sticks to the <strong>left</strong> of it.</p>
|
|
|
|
<ul>
|
|
<li>For example, if the sticks are arranged <code>[<u>1</u>,<u>3</u>,2,<u>5</u>,4]</code>, then the sticks with lengths <code>1</code>, <code>3</code>, and <code>5</code> are visible from the left.</li>
|
|
</ul>
|
|
|
|
<p>Given <code>n</code> and <code>k</code>, return <em>the <strong>number</strong> of such arrangements</em>. Since the answer may be large, return it <strong>modulo</strong> <code>10<sup>9</sup> + 7</code>.</p>
|
|
|
|
<p> </p>
|
|
<p><strong>Example 1:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> n = 3, k = 2
|
|
<strong>Output:</strong> 3
|
|
<strong>Explanation:</strong> [<u>1</u>,<u>3</u>,2], [<u>2</u>,<u>3</u>,1], and [<u>2</u>,1,<u>3</u>] are the only arrangements such that exactly 2 sticks are visible.
|
|
The visible sticks are underlined.
|
|
</pre>
|
|
|
|
<p><strong>Example 2:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> n = 5, k = 5
|
|
<strong>Output:</strong> 1
|
|
<strong>Explanation:</strong> [<u>1</u>,<u>2</u>,<u>3</u>,<u>4</u>,<u>5</u>] is the only arrangement such that all 5 sticks are visible.
|
|
The visible sticks are underlined.
|
|
</pre>
|
|
|
|
<p><strong>Example 3:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> n = 20, k = 11
|
|
<strong>Output:</strong> 647427950
|
|
<strong>Explanation:</strong> There are 647427950 (mod 10<sup>9 </sup>+ 7) ways to rearrange the sticks such that exactly 11 sticks are visible.
|
|
</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= n <= 1000</code></li>
|
|
<li><code>1 <= k <= n</code></li>
|
|
</ul>
|