mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
63 lines
3.0 KiB
HTML
63 lines
3.0 KiB
HTML
<p>You are given two positive integers <code>left</code> and <code>right</code> with <code>left <= right</code>. Calculate the <strong>product</strong> of all integers in the <strong>inclusive</strong> range <code>[left, right]</code>.</p>
|
|
|
|
<p>Since the product may be very large, you will <strong>abbreviate</strong> it following these steps:</p>
|
|
|
|
<ol>
|
|
<li>Count all <strong>trailing</strong> zeros in the product and <strong>remove</strong> them. Let us denote this count as <code>C</code>.
|
|
|
|
<ul>
|
|
<li>For example, there are <code>3</code> trailing zeros in <code>1000</code>, and there are <code>0</code> trailing zeros in <code>546</code>.</li>
|
|
</ul>
|
|
</li>
|
|
<li>Denote the remaining number of digits in the product as <code>d</code>. If <code>d > 10</code>, then express the product as <code><pre>...<suf></code> where <code><pre></code> denotes the <strong>first</strong> <code>5</code> digits of the product, and <code><suf></code> denotes the <strong>last</strong> <code>5</code> digits of the product <strong>after</strong> removing all trailing zeros. If <code>d <= 10</code>, we keep it unchanged.
|
|
<ul>
|
|
<li>For example, we express <code>1234567654321</code> as <code>12345...54321</code>, but <code>1234567</code> is represented as <code>1234567</code>.</li>
|
|
</ul>
|
|
</li>
|
|
<li>Finally, represent the product as a <strong>string</strong> <code>"<pre>...<suf>eC"</code>.
|
|
<ul>
|
|
<li>For example, <code>12345678987600000</code> will be represented as <code>"12345...89876e5"</code>.</li>
|
|
</ul>
|
|
</li>
|
|
</ol>
|
|
|
|
<p>Return <em>a string denoting the <strong>abbreviated product</strong> of all integers in the <strong>inclusive</strong> range</em> <code>[left, right]</code>.</p>
|
|
|
|
<p> </p>
|
|
<p><strong>Example 1:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> left = 1, right = 4
|
|
<strong>Output:</strong> "24e0"
|
|
<strong>Explanation:</strong> The product is 1 × 2 × 3 × 4 = 24.
|
|
There are no trailing zeros, so 24 remains the same. The abbreviation will end with "e0".
|
|
Since the number of digits is 2, which is less than 10, we do not have to abbreviate it further.
|
|
Thus, the final representation is "24e0".
|
|
</pre>
|
|
|
|
<p><strong>Example 2:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> left = 2, right = 11
|
|
<strong>Output:</strong> "399168e2"
|
|
<strong>Explanation:</strong> The product is 39916800.
|
|
There are 2 trailing zeros, which we remove to get 399168. The abbreviation will end with "e2".
|
|
The number of digits after removing the trailing zeros is 6, so we do not abbreviate it further.
|
|
Hence, the abbreviated product is "399168e2".
|
|
</pre>
|
|
|
|
<p><strong>Example 3:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> left = 371, right = 375
|
|
<strong>Output:</strong> "7219856259e3"
|
|
<strong>Explanation:</strong> The product is 7219856259000.
|
|
</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= left <= right <= 10<sup>4</sup></code></li>
|
|
</ul>
|