1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode/problem/minimum-time-visiting-all-points.html

45 lines
1.8 KiB
HTML

<p>On a 2D plane, there are <code>n</code> points with integer coordinates <code>points[i] = [x<sub>i</sub>, y<sub>i</sub>]</code>. Return <em>the <strong>minimum time</strong> in seconds to visit all the points in the order given by </em><code>points</code>.</p>
<p>You can move according to these rules:</p>
<ul>
<li>In <code>1</code> second, you can either:
<ul>
<li>move vertically by one&nbsp;unit,</li>
<li>move horizontally by one unit, or</li>
<li>move diagonally <code>sqrt(2)</code> units (in other words, move one unit vertically then one unit horizontally in <code>1</code> second).</li>
</ul>
</li>
<li>You have to visit the points in the same order as they appear in the array.</li>
<li>You are allowed to pass through points that appear later in the order, but these do not count as visits.</li>
</ul>
<p>&nbsp;</p>
<p><strong class="example">Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2019/11/14/1626_example_1.PNG" style="width: 500px; height: 428px;" />
<pre>
<strong>Input:</strong> points = [[1,1],[3,4],[-1,0]]
<strong>Output:</strong> 7
<strong>Explanation: </strong>One optimal path is <strong>[1,1]</strong> -&gt; [2,2] -&gt; [3,3] -&gt; <strong>[3,4] </strong>-&gt; [2,3] -&gt; [1,2] -&gt; [0,1] -&gt; <strong>[-1,0]</strong>
Time from [1,1] to [3,4] = 3 seconds
Time from [3,4] to [-1,0] = 4 seconds
Total time = 7 seconds</pre>
<p><strong class="example">Example 2:</strong></p>
<pre>
<strong>Input:</strong> points = [[3,2],[-2,2]]
<strong>Output:</strong> 5
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>points.length == n</code></li>
<li><code>1 &lt;= n&nbsp;&lt;= 100</code></li>
<li><code>points[i].length == 2</code></li>
<li><code>-1000&nbsp;&lt;= points[i][0], points[i][1]&nbsp;&lt;= 1000</code></li>
</ul>