mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
161 lines
20 KiB
JSON
161 lines
20 KiB
JSON
{
|
|
"data": {
|
|
"question": {
|
|
"questionId": "3348",
|
|
"questionFrontendId": "3108",
|
|
"boundTopicId": null,
|
|
"title": "Minimum Cost Walk in Weighted Graph",
|
|
"titleSlug": "minimum-cost-walk-in-weighted-graph",
|
|
"content": "<p>There is an undirected weighted graph with <code>n</code> vertices labeled from <code>0</code> to <code>n - 1</code>.</p>\n\n<p>You are given the integer <code>n</code> and an array <code>edges</code>, where <code>edges[i] = [u<sub>i</sub>, v<sub>i</sub>, w<sub>i</sub>]</code> indicates that there is an edge between vertices <code>u<sub>i</sub></code> and <code>v<sub>i</sub></code> with a weight of <code>w<sub>i</sub></code>.</p>\n\n<p>A walk on a graph is a sequence of vertices and edges. The walk starts and ends with a vertex, and each edge connects the vertex that comes before it and the vertex that comes after it. It's important to note that a walk may visit the same edge or vertex more than once.</p>\n\n<p>The <strong>cost</strong> of a walk starting at node <code>u</code> and ending at node <code>v</code> is defined as the bitwise <code>AND</code> of the weights of the edges traversed during the walk. In other words, if the sequence of edge weights encountered during the walk is <code>w<sub>0</sub>, w<sub>1</sub>, w<sub>2</sub>, ..., w<sub>k</sub></code>, then the cost is calculated as <code>w<sub>0</sub> & w<sub>1</sub> & w<sub>2</sub> & ... & w<sub>k</sub></code>, where <code>&</code> denotes the bitwise <code>AND</code> operator.</p>\n\n<p>You are also given a 2D array <code>query</code>, where <code>query[i] = [s<sub>i</sub>, t<sub>i</sub>]</code>. For each query, you need to find the minimum cost of the walk starting at vertex <code>s<sub>i</sub></code> and ending at vertex <code>t<sub>i</sub></code>. If there exists no such walk, the answer is <code>-1</code>.</p>\n\n<p>Return <em>the array </em><code>answer</code><em>, where </em><code>answer[i]</code><em> denotes the <strong>minimum</strong> cost of a walk for query </em><code>i</code>.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>Input:</strong> <span class=\"example-io\">n = 5, edges = [[0,1,7],[1,3,7],[1,2,1]], query = [[0,3],[3,4]]</span></p>\n\n<p><strong>Output:</strong> <span class=\"example-io\">[1,-1]</span></p>\n\n<p><strong>Explanation:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2024/01/31/q4_example1-1.png\" style=\"padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 351px; height: 141px;\" />\n<p>To achieve the cost of 1 in the first query, we need to move on the following edges: <code>0->1</code> (weight 7), <code>1->2</code> (weight 1), <code>2->1</code> (weight 1), <code>1->3</code> (weight 7).</p>\n\n<p>In the second query, there is no walk between nodes 3 and 4, so the answer is -1.</p>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n</div>\n\n<div class=\"example-block\">\n<p><strong>Input:</strong> <span class=\"example-io\">n = 3, edges = [[0,2,7],[0,1,15],[1,2,6],[1,2,1]], query = [[1,2]]</span></p>\n\n<p><strong>Output:</strong> <span class=\"example-io\">[0]</span></p>\n\n<p><strong>Explanation:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2024/01/31/q4_example2e.png\" style=\"padding: 10px; background: rgb(255, 255, 255); border-radius: 0.5rem; width: 211px; height: 181px;\" />\n<p>To achieve the cost of 0 in the first query, we need to move on the following edges: <code>1->2</code> (weight 1), <code>2->1</code> (weight 6), <code>1->2</code> (weight 1).</p>\n</div>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>1 <= n <= 10<sup>5</sup></code></li>\n\t<li><code>0 <= edges.length <= 10<sup>5</sup></code></li>\n\t<li><code>edges[i].length == 3</code></li>\n\t<li><code>0 <= u<sub>i</sub>, v<sub>i</sub> <= n - 1</code></li>\n\t<li><code>u<sub>i</sub> != v<sub>i</sub></code></li>\n\t<li><code>0 <= w<sub>i</sub> <= 10<sup>5</sup></code></li>\n\t<li><code>1 <= query.length <= 10<sup>5</sup></code></li>\n\t<li><code>query[i].length == 2</code></li>\n\t<li><code>0 <= s<sub>i</sub>, t<sub>i</sub> <= n - 1</code></li>\n</ul>\n",
|
|
"translatedTitle": null,
|
|
"translatedContent": null,
|
|
"isPaidOnly": false,
|
|
"difficulty": "Hard",
|
|
"likes": 17,
|
|
"dislikes": 6,
|
|
"isLiked": null,
|
|
"similarQuestions": "[]",
|
|
"exampleTestcases": "5\n[[0,1,7],[1,3,7],[1,2,1]]\n[[0,3],[3,4]]\n3\n[[0,2,7],[0,1,15],[1,2,6],[1,2,1]]\n[[1,2]]",
|
|
"categoryTitle": "Algorithms",
|
|
"contributors": [],
|
|
"topicTags": [],
|
|
"companyTagStats": null,
|
|
"codeSnippets": [
|
|
{
|
|
"lang": "C++",
|
|
"langSlug": "cpp",
|
|
"code": "class Solution {\npublic:\n vector<int> minimumCost(int n, vector<vector<int>>& edges, vector<vector<int>>& query) {\n \n }\n};",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Java",
|
|
"langSlug": "java",
|
|
"code": "class Solution {\n public int[] minimumCost(int n, int[][] edges, int[][] query) {\n \n }\n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Python",
|
|
"langSlug": "python",
|
|
"code": "class Solution(object):\n def minimumCost(self, n, edges, query):\n \"\"\"\n :type n: int\n :type edges: List[List[int]]\n :type query: List[List[int]]\n :rtype: List[int]\n \"\"\"\n ",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Python3",
|
|
"langSlug": "python3",
|
|
"code": "class Solution:\n def minimumCost(self, n: int, edges: List[List[int]], query: List[List[int]]) -> List[int]:\n ",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "C",
|
|
"langSlug": "c",
|
|
"code": "/**\n * Note: The returned array must be malloced, assume caller calls free().\n */\nint* minimumCost(int n, int** edges, int edgesSize, int* edgesColSize, int** query, int querySize, int* queryColSize, int* returnSize) {\n \n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "C#",
|
|
"langSlug": "csharp",
|
|
"code": "public class Solution {\n public int[] MinimumCost(int n, int[][] edges, int[][] query) {\n \n }\n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "JavaScript",
|
|
"langSlug": "javascript",
|
|
"code": "/**\n * @param {number} n\n * @param {number[][]} edges\n * @param {number[][]} query\n * @return {number[]}\n */\nvar minimumCost = function(n, edges, query) {\n \n};",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "TypeScript",
|
|
"langSlug": "typescript",
|
|
"code": "function minimumCost(n: number, edges: number[][], query: number[][]): number[] {\n \n};",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "PHP",
|
|
"langSlug": "php",
|
|
"code": "class Solution {\n\n /**\n * @param Integer $n\n * @param Integer[][] $edges\n * @param Integer[][] $query\n * @return Integer[]\n */\n function minimumCost($n, $edges, $query) {\n \n }\n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Swift",
|
|
"langSlug": "swift",
|
|
"code": "class Solution {\n func minimumCost(_ n: Int, _ edges: [[Int]], _ query: [[Int]]) -> [Int] {\n \n }\n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Kotlin",
|
|
"langSlug": "kotlin",
|
|
"code": "class Solution {\n fun minimumCost(n: Int, edges: Array<IntArray>, query: Array<IntArray>): IntArray {\n \n }\n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Dart",
|
|
"langSlug": "dart",
|
|
"code": "class Solution {\n List<int> minimumCost(int n, List<List<int>> edges, List<List<int>> query) {\n \n }\n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Go",
|
|
"langSlug": "golang",
|
|
"code": "func minimumCost(n int, edges [][]int, query [][]int) []int {\n \n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Ruby",
|
|
"langSlug": "ruby",
|
|
"code": "# @param {Integer} n\n# @param {Integer[][]} edges\n# @param {Integer[][]} query\n# @return {Integer[]}\ndef minimum_cost(n, edges, query)\n \nend",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Scala",
|
|
"langSlug": "scala",
|
|
"code": "object Solution {\n def minimumCost(n: Int, edges: Array[Array[Int]], query: Array[Array[Int]]): Array[Int] = {\n \n }\n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Rust",
|
|
"langSlug": "rust",
|
|
"code": "impl Solution {\n pub fn minimum_cost(n: i32, edges: Vec<Vec<i32>>, query: Vec<Vec<i32>>) -> Vec<i32> {\n \n }\n}",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Racket",
|
|
"langSlug": "racket",
|
|
"code": "(define/contract (minimum-cost n edges query)\n (-> exact-integer? (listof (listof exact-integer?)) (listof (listof exact-integer?)) (listof exact-integer?))\n )",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Erlang",
|
|
"langSlug": "erlang",
|
|
"code": "-spec minimum_cost(N :: integer(), Edges :: [[integer()]], Query :: [[integer()]]) -> [integer()].\nminimum_cost(N, Edges, Query) ->\n .",
|
|
"__typename": "CodeSnippetNode"
|
|
},
|
|
{
|
|
"lang": "Elixir",
|
|
"langSlug": "elixir",
|
|
"code": "defmodule Solution do\n @spec minimum_cost(n :: integer, edges :: [[integer]], query :: [[integer]]) :: [integer]\n def minimum_cost(n, edges, query) do\n \n end\nend",
|
|
"__typename": "CodeSnippetNode"
|
|
}
|
|
],
|
|
"stats": "{\"totalAccepted\": \"2.4K\", \"totalSubmission\": \"9.4K\", \"totalAcceptedRaw\": 2371, \"totalSubmissionRaw\": 9366, \"acRate\": \"25.3%\"}",
|
|
"hints": [
|
|
"The intended solution uses Disjoint Set Union.",
|
|
"Notice that, if <code>u</code> and <code>v</code> are not connected then the answer is <code>-1</code>, otherwise we can use all the edges from the connected component where both belong to."
|
|
],
|
|
"solution": null,
|
|
"status": null,
|
|
"sampleTestCase": "5\n[[0,1,7],[1,3,7],[1,2,1]]\n[[0,3],[3,4]]",
|
|
"metaData": "{\n \"name\": \"minimumCost\",\n \"params\": [\n {\n \"name\": \"n\",\n \"type\": \"integer\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"edges\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"query\"\n }\n ],\n \"return\": {\n \"type\": \"integer[]\"\n }\n}",
|
|
"judgerAvailable": true,
|
|
"judgeType": "large",
|
|
"mysqlSchemas": [],
|
|
"enableRunCode": true,
|
|
"enableTestMode": false,
|
|
"enableDebugger": true,
|
|
"envInfo": "{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 17 </code> using the latest C++ 20 standard, and <code>libstdc++</code> provided by GCC 11.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code>OpenJDK 21</code>. Using compile arguments: <code>--enable-preview --release 21</code></p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 11</code> using the gnu11 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-12\\\" target=\\\"_blank\\\">C# 12</a> with .NET 8 runtime</p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 20.10.0</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use 5.4.0 version of <a href=\\\"https://github.com/datastructures-js/priority-queue/blob/v5/README.md\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and 4.2.3 version of <a href=\\\"https://github.com/datastructures-js/queue/tree/v4.2.3\\\" target=\\\"_blank\\\">datastructures-js/queue</a>.</p>\"], \"ruby\": [\"Ruby\", \"<p><code>Ruby 3.2</code></p>\\r\\n\\r\\n<p>Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms</p>\"], \"swift\": [\"Swift\", \"<p><code>Swift 5.9</code>.</p>\\r\\n\\r\\n<p>You may use <a href=\\\"https://github.com/apple/swift-algorithms/tree/1.2.0\\\" target=\\\"_blank\\\">swift-algorithms 1.2.0</a> and <a href=\\\"https://github.com/apple/swift-collections/tree/1.0.6\\\" target=\\\"_blank\\\">swift-collections 1.0.6</a>.</p>\"], \"golang\": [\"Go\", \"<p><code>Go 1.21</code></p>\\r\\n<p>Support <a href=\\\"https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1\\\" target=\\\"_blank\\\">https://pkg.go.dev/github.com/emirpasic/gods@v1.18.1</a> and <a href=\\\"https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha\\\" target=\\\"_blank\\\">https://pkg.go.dev/github.com/emirpasic/gods/v2@v2.0.0-alpha</a> library.</p>\"], \"python3\": [\"Python3\", \"<p><code>Python 3.11</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/3/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/3/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/3/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\"], \"scala\": [\"Scala\", \"<p><code>Scala 3.3.1</code>.</p>\"], \"kotlin\": [\"Kotlin\", \"<p><code>Kotlin 1.9.0</code>.</p>\\r\\n\\r\\n<p>We are using an experimental compiler provided by JetBrains.</p>\"], \"rust\": [\"Rust\", \"<p><code>Rust 1.74.1</code></p>\\r\\n\\r\\n<p>Supports <a href=\\\"https://crates.io/crates/rand\\\" target=\\\"_blank\\\">rand </a> v0.6\\u00a0from crates.io</p>\"], \"php\": [\"PHP\", \"<p><code>PHP 8.2</code>.</p>\\r\\n<p>With bcmath module</p>\"], \"typescript\": [\"Typescript\", \"<p><code>TypeScript 5.1.6, Node.js 20.10.0</code>.</p>\\r\\n\\r\\n<p>Compile Options: <code>--alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022</code></p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES2022 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\"], \"racket\": [\"Racket\", \"<p><a href=\\\"https://docs.racket-lang.org/guide/performance.html#%28tech._c%29\\\" target=\\\"_blank\\\">Racket CS</a> v8.11</p>\\r\\n\\r\\n<p>Using <code>#lang racket</code></p>\\r\\n\\r\\n<p>Required <code>data/gvector data/queue data/order data/heap</code> automatically for your convenience</p>\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 26\"], \"elixir\": [\"Elixir\", \"Elixir 1.15 with Erlang/OTP 26\"], \"dart\": [\"Dart\", \"<p>Dart 3.2</p>\\r\\n\\r\\n<p>Your code will be run directly without compiling</p>\"]}",
|
|
"libraryUrl": null,
|
|
"adminUrl": null,
|
|
"challengeQuestion": null,
|
|
"__typename": "QuestionNode"
|
|
}
|
|
}
|
|
} |