mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
188 lines
20 KiB
JSON
188 lines
20 KiB
JSON
{
|
||
"data": {
|
||
"question": {
|
||
"questionId": "3260",
|
||
"questionFrontendId": "3013",
|
||
"boundTopicId": null,
|
||
"title": "Divide an Array Into Subarrays With Minimum Cost II",
|
||
"titleSlug": "divide-an-array-into-subarrays-with-minimum-cost-ii",
|
||
"content": "<p>You are given a <strong>0-indexed</strong> array of integers <code>nums</code> of length <code>n</code>, and two <strong>positive</strong> integers <code>k</code> and <code>dist</code>.</p>\n\n<p>The <strong>cost</strong> of an array is the value of its <strong>first</strong> element. For example, the cost of <code>[1,2,3]</code> is <code>1</code> while the cost of <code>[3,4,1]</code> is <code>3</code>.</p>\n\n<p>You need to divide <code>nums</code> into <code>k</code> <strong>disjoint contiguous </strong><span data-keyword=\"subarray-nonempty\">subarrays</span>, such that the difference between the starting index of the <strong>second</strong> subarray and the starting index of the <code>kth</code> subarray should be <strong>less than or equal to</strong> <code>dist</code>. In other words, if you divide <code>nums</code> into the subarrays <code>nums[0..(i<sub>1</sub> - 1)], nums[i<sub>1</sub>..(i<sub>2</sub> - 1)], ..., nums[i<sub>k-1</sub>..(n - 1)]</code>, then <code>i<sub>k-1</sub> - i<sub>1</sub> <= dist</code>.</p>\n\n<p>Return <em>the <strong>minimum</strong> possible sum of the cost of these</em> <em>subarrays</em>.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [1,3,2,6,4,2], k = 3, dist = 3\n<strong>Output:</strong> 5\n<strong>Explanation:</strong> The best possible way to divide nums into 3 subarrays is: [1,3], [2,6,4], and [2]. This choice is valid because i<sub>k-1</sub> - i<sub>1</sub> is 5 - 2 = 3 which is equal to dist. The total cost is nums[0] + nums[2] + nums[5] which is 1 + 2 + 2 = 5.\nIt can be shown that there is no possible way to divide nums into 3 subarrays at a cost lower than 5.\n</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [10,1,2,2,2,1], k = 4, dist = 3\n<strong>Output:</strong> 15\n<strong>Explanation:</strong> The best possible way to divide nums into 4 subarrays is: [10], [1], [2], and [2,2,1]. This choice is valid because i<sub>k-1</sub> - i<sub>1</sub> is 3 - 1 = 2 which is less than dist. The total cost is nums[0] + nums[1] + nums[2] + nums[3] which is 10 + 1 + 2 + 2 = 15.\nThe division [10], [1], [2,2,2], and [1] is not valid, because the difference between i<sub>k-1</sub> and i<sub>1</sub> is 5 - 1 = 4, which is greater than dist.\nIt can be shown that there is no possible way to divide nums into 4 subarrays at a cost lower than 15.\n</pre>\n\n<p><strong class=\"example\">Example 3:</strong></p>\n\n<pre>\n<strong>Input:</strong> nums = [10,8,18,9], k = 3, dist = 1\n<strong>Output:</strong> 36\n<strong>Explanation:</strong> The best possible way to divide nums into 4 subarrays is: [10], [8], and [18,9]. This choice is valid because i<sub>k-1</sub> - i<sub>1</sub> is 2 - 1 = 1 which is equal to dist.The total cost is nums[0] + nums[1] + nums[2] which is 10 + 8 + 18 = 36.\nThe division [10], [8,18], and [9] is not valid, because the difference between i<sub>k-1</sub> and i<sub>1</sub> is 3 - 1 = 2, which is greater than dist.\nIt can be shown that there is no possible way to divide nums into 3 subarrays at a cost lower than 36.\n</pre>\n\n<p> </p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>3 <= n <= 10<sup>5</sup></code></li>\n\t<li><code>1 <= nums[i] <= 10<sup>9</sup></code></li>\n\t<li><code>3 <= k <= n</code></li>\n\t<li><code>k - 2 <= dist <= n - 2</code></li>\n</ul>\n",
|
||
"translatedTitle": null,
|
||
"translatedContent": null,
|
||
"isPaidOnly": false,
|
||
"difficulty": "Hard",
|
||
"likes": 72,
|
||
"dislikes": 7,
|
||
"isLiked": null,
|
||
"similarQuestions": "[{\"title\": \"Minimum Cost to Cut a Stick\", \"titleSlug\": \"minimum-cost-to-cut-a-stick\", \"difficulty\": \"Hard\", \"translatedTitle\": null}, {\"title\": \"Minimum Cost to Split an Array\", \"titleSlug\": \"minimum-cost-to-split-an-array\", \"difficulty\": \"Hard\", \"translatedTitle\": null}]",
|
||
"exampleTestcases": "[1,3,2,6,4,2]\n3\n3\n[10,1,2,2,2,1]\n4\n3\n[10,8,18,9]\n3\n1",
|
||
"categoryTitle": "Algorithms",
|
||
"contributors": [],
|
||
"topicTags": [
|
||
{
|
||
"name": "Array",
|
||
"slug": "array",
|
||
"translatedName": null,
|
||
"__typename": "TopicTagNode"
|
||
},
|
||
{
|
||
"name": "Hash Table",
|
||
"slug": "hash-table",
|
||
"translatedName": null,
|
||
"__typename": "TopicTagNode"
|
||
},
|
||
{
|
||
"name": "Sliding Window",
|
||
"slug": "sliding-window",
|
||
"translatedName": null,
|
||
"__typename": "TopicTagNode"
|
||
},
|
||
{
|
||
"name": "Heap (Priority Queue)",
|
||
"slug": "heap-priority-queue",
|
||
"translatedName": null,
|
||
"__typename": "TopicTagNode"
|
||
}
|
||
],
|
||
"companyTagStats": null,
|
||
"codeSnippets": [
|
||
{
|
||
"lang": "C++",
|
||
"langSlug": "cpp",
|
||
"code": "class Solution {\npublic:\n long long minimumCost(vector<int>& nums, int k, int dist) {\n \n }\n};",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Java",
|
||
"langSlug": "java",
|
||
"code": "class Solution {\n public long minimumCost(int[] nums, int k, int dist) {\n \n }\n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Python",
|
||
"langSlug": "python",
|
||
"code": "class Solution(object):\n def minimumCost(self, nums, k, dist):\n \"\"\"\n :type nums: List[int]\n :type k: int\n :type dist: int\n :rtype: int\n \"\"\"\n ",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Python3",
|
||
"langSlug": "python3",
|
||
"code": "class Solution:\n def minimumCost(self, nums: List[int], k: int, dist: int) -> int:\n ",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "C",
|
||
"langSlug": "c",
|
||
"code": "long long minimumCost(int* nums, int numsSize, int k, int dist) {\n \n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "C#",
|
||
"langSlug": "csharp",
|
||
"code": "public class Solution {\n public long MinimumCost(int[] nums, int k, int dist) {\n \n }\n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "JavaScript",
|
||
"langSlug": "javascript",
|
||
"code": "/**\n * @param {number[]} nums\n * @param {number} k\n * @param {number} dist\n * @return {number}\n */\nvar minimumCost = function(nums, k, dist) {\n \n};",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "TypeScript",
|
||
"langSlug": "typescript",
|
||
"code": "function minimumCost(nums: number[], k: number, dist: number): number {\n \n};",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "PHP",
|
||
"langSlug": "php",
|
||
"code": "class Solution {\n\n /**\n * @param Integer[] $nums\n * @param Integer $k\n * @param Integer $dist\n * @return Integer\n */\n function minimumCost($nums, $k, $dist) {\n \n }\n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Swift",
|
||
"langSlug": "swift",
|
||
"code": "class Solution {\n func minimumCost(_ nums: [Int], _ k: Int, _ dist: Int) -> Int {\n \n }\n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Kotlin",
|
||
"langSlug": "kotlin",
|
||
"code": "class Solution {\n fun minimumCost(nums: IntArray, k: Int, dist: Int): Long {\n \n }\n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Dart",
|
||
"langSlug": "dart",
|
||
"code": "class Solution {\n int minimumCost(List<int> nums, int k, int dist) {\n \n }\n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Go",
|
||
"langSlug": "golang",
|
||
"code": "func minimumCost(nums []int, k int, dist int) int64 {\n \n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Ruby",
|
||
"langSlug": "ruby",
|
||
"code": "# @param {Integer[]} nums\n# @param {Integer} k\n# @param {Integer} dist\n# @return {Integer}\ndef minimum_cost(nums, k, dist)\n \nend",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Scala",
|
||
"langSlug": "scala",
|
||
"code": "object Solution {\n def minimumCost(nums: Array[Int], k: Int, dist: Int): Long = {\n \n }\n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Rust",
|
||
"langSlug": "rust",
|
||
"code": "impl Solution {\n pub fn minimum_cost(nums: Vec<i32>, k: i32, dist: i32) -> i64 {\n \n }\n}",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Racket",
|
||
"langSlug": "racket",
|
||
"code": "(define/contract (minimum-cost nums k dist)\n (-> (listof exact-integer?) exact-integer? exact-integer? exact-integer?)\n )",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Erlang",
|
||
"langSlug": "erlang",
|
||
"code": "-spec minimum_cost(Nums :: [integer()], K :: integer(), Dist :: integer()) -> integer().\nminimum_cost(Nums, K, Dist) ->\n .",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Elixir",
|
||
"langSlug": "elixir",
|
||
"code": "defmodule Solution do\n @spec minimum_cost(nums :: [integer], k :: integer, dist :: integer) :: integer\n def minimum_cost(nums, k, dist) do\n \n end\nend",
|
||
"__typename": "CodeSnippetNode"
|
||
}
|
||
],
|
||
"stats": "{\"totalAccepted\": \"2.5K\", \"totalSubmission\": \"9.1K\", \"totalAcceptedRaw\": 2535, \"totalSubmissionRaw\": 9088, \"acRate\": \"27.9%\"}",
|
||
"hints": [
|
||
"For each <code>i > 0</code>, try each <code>nums[i]</code> as the first element of the second subarray. We need to find the sum of <code>k - 2</code> smallest values in the index range <code>[i + 1, min(i + dist, n - 1)]</code>.",
|
||
"Typically, we use a max heap to maintain the top <code>k - 2</code> smallest values dynamically. Here we also have a sliding window, which is the index range <code>[i + 1, min(i + dist, n - 1)]</code>. We can use another min heap to put unselected values for future use.",
|
||
"Update the two heaps when iteration over <code>i</code>. Ordered/Tree sets are also a good choice since we have to delete elements.",
|
||
"If the max heap’s size is less than <code>k - 2</code>, use the min heap’s value to fill it. If the maximum value in the max heap is larger than the smallest value in the min heap, swap them in the two heaps."
|
||
],
|
||
"solution": null,
|
||
"status": null,
|
||
"sampleTestCase": "[1,3,2,6,4,2]\n3\n3",
|
||
"metaData": "{\n \"name\": \"minimumCost\",\n \"params\": [\n {\n \"name\": \"nums\",\n \"type\": \"integer[]\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"k\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"dist\"\n }\n ],\n \"return\": {\n \"type\": \"long\"\n }\n}",
|
||
"judgerAvailable": true,
|
||
"judgeType": "large",
|
||
"mysqlSchemas": [],
|
||
"enableRunCode": true,
|
||
"enableTestMode": false,
|
||
"enableDebugger": true,
|
||
"envInfo": "{\"cpp\": [\"C++\", \"<p>Compiled with <code> clang 17 </code> using the latest C++ 20 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level two optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\"], \"java\": [\"Java\", \"<p><code>OpenJDK 21</code>. Using compile arguments: <code>--enable-preview --release 21</code></p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n<p>Includes <code>Pair</code> class from https://docs.oracle.com/javase/8/javafx/api/javafx/util/Pair.html.</p>\"], \"python\": [\"Python\", \"<p><code>Python 2.7.12</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/2/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/2/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/2/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\\r\\n\\r\\n<p>Note that Python 2.7 <a href=\\\"https://www.python.org/dev/peps/pep-0373/\\\" target=\\\"_blank\\\">will not be maintained past 2020</a>. For the latest Python, please choose Python3 instead.</p>\"], \"c\": [\"C\", \"<p>Compiled with <code>gcc 11</code> using the gnu11 standard.</p>\\r\\n\\r\\n<p>Your code is compiled with level one optimization (<code>-O2</code>). <a href=\\\"https://github.com/google/sanitizers/wiki/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer</a> is also enabled to help detect out-of-bounds and use-after-free bugs.</p>\\r\\n\\r\\n<p>Most standard library headers are already included automatically for your convenience.</p>\\r\\n\\r\\n<p>For hash table operations, you may use <a href=\\\"https://troydhanson.github.io/uthash/\\\" target=\\\"_blank\\\">uthash</a>. \\\"uthash.h\\\" is included by default. Below are some examples:</p>\\r\\n\\r\\n<p><b>1. Adding an item to a hash.</b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; /* we'll use this field as the key */\\r\\n char name[10];\\r\\n UT_hash_handle hh; /* makes this structure hashable */\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>2. Looking up an item in a hash:</b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n</pre>\\r\\n</p>\\r\\n\\r\\n<p><b>3. Deleting an item in a hash:</b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n</pre>\\r\\n</p>\"], \"csharp\": [\"C#\", \"<p><a href=\\\"https://learn.microsoft.com/en-us/dotnet/csharp/whats-new/csharp-12\\\" target=\\\"_blank\\\">C# 12</a> with .NET 8 runtime</p>\"], \"javascript\": [\"JavaScript\", \"<p><code>Node.js 20.10.0</code>.</p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES6 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\\r\\n\\r\\n<p>For Priority Queue / Queue data structures, you may use 5.3.0 version of <a href=\\\"https://github.com/datastructures-js/priority-queue/tree/fb4fdb984834421279aeb081df7af624d17c2a03\\\" target=\\\"_blank\\\">datastructures-js/priority-queue</a> and 4.2.1 version of <a href=\\\"https://github.com/datastructures-js/queue/tree/e63563025a5a805aa16928cb53bcd517bfea9230\\\" target=\\\"_blank\\\">datastructures-js/queue</a>.</p>\"], \"ruby\": [\"Ruby\", \"<p><code>Ruby 3.2</code></p>\\r\\n\\r\\n<p>Some common data structure implementations are provided in the Algorithms module: https://www.rubydoc.info/github/kanwei/algorithms/Algorithms</p>\"], \"swift\": [\"Swift\", \"<p><code>Swift 5.9</code>.</p>\"], \"golang\": [\"Go\", \"<p><code>Go 1.21</code></p>\\r\\n<p>Support <a href=\\\"https://github.com/emirpasic/gods/tree/v1.18.1\\\" target=\\\"_blank\\\">https://godoc.org/github.com/emirpasic/gods@v1.18.1</a> library.</p>\"], \"python3\": [\"Python3\", \"<p><code>Python 3.11</code>.</p>\\r\\n\\r\\n<p>Most libraries are already imported automatically for your convenience, such as <a href=\\\"https://docs.python.org/3/library/array.html\\\" target=\\\"_blank\\\">array</a>, <a href=\\\"https://docs.python.org/3/library/bisect.html\\\" target=\\\"_blank\\\">bisect</a>, <a href=\\\"https://docs.python.org/3/library/collections.html\\\" target=\\\"_blank\\\">collections</a>. If you need more libraries, you can import it yourself.</p>\\r\\n\\r\\n<p>For Map/TreeMap data structure, you may use <a href=\\\"http://www.grantjenks.com/docs/sortedcontainers/\\\" target=\\\"_blank\\\">sortedcontainers</a> library.</p>\"], \"scala\": [\"Scala\", \"<p><code>Scala 2.13.7</code>.</p>\"], \"kotlin\": [\"Kotlin\", \"<p><code>Kotlin 1.9.0</code>.</p>\\r\\n\\r\\n<p>We are using an experimental compiler provided by JetBrains.</p>\"], \"rust\": [\"Rust\", \"<p><code>Rust 1.74.1</code></p>\\r\\n\\r\\n<p>Supports <a href=\\\"https://crates.io/crates/rand\\\" target=\\\"_blank\\\">rand </a> v0.6\\u00a0from crates.io</p>\"], \"php\": [\"PHP\", \"<p><code>PHP 8.2</code>.</p>\\r\\n<p>With bcmath module</p>\"], \"typescript\": [\"Typescript\", \"<p><code>TypeScript 5.1.6, Node.js 20.10.0</code>.</p>\\r\\n\\r\\n<p>Compile Options: <code>--alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022</code></p>\\r\\n\\r\\n<p>Your code is run with <code>--harmony</code> flag, enabling <a href=\\\"http://node.green/\\\" target=\\\"_blank\\\">new ES2022 features</a>.</p>\\r\\n\\r\\n<p><a href=\\\"https://lodash.com\\\" target=\\\"_blank\\\">lodash.js</a> library is included by default.</p>\"], \"racket\": [\"Racket\", \"<p><a href=\\\"https://docs.racket-lang.org/guide/performance.html#%28tech._c%29\\\" target=\\\"_blank\\\">Racket CS</a> v8.11</p>\\r\\n\\r\\n<p>Using <code>#lang racket</code></p>\\r\\n\\r\\n<p>Required <code>data/gvector data/queue data/order data/heap</code> automatically for your convenience</p>\"], \"erlang\": [\"Erlang\", \"Erlang/OTP 26\"], \"elixir\": [\"Elixir\", \"Elixir 1.15 with Erlang/OTP 26\"], \"dart\": [\"Dart\", \"<p>Dart 3.2</p>\\r\\n\\r\\n<p>Your code will be run directly without compiling</p>\"]}",
|
||
"libraryUrl": null,
|
||
"adminUrl": null,
|
||
"challengeQuestion": null,
|
||
"__typename": "QuestionNode"
|
||
}
|
||
}
|
||
} |