1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/problem (Chinese)/最大化子数组的总成本 [maximize-total-cost-of-alternating-subarrays].html
2024-06-25 01:21:44 +08:00

75 lines
2.9 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<p>给你一个长度为 <code>n</code> 的整数数组 <code>nums</code></p>
<p>子数组 <code>nums[l..r]</code>(其中 <code>0 &lt;= l &lt;= r &lt; n</code>)的 <strong>成本 </strong>定义为:</p>
<p><code>cost(l, r) = nums[l] - nums[l + 1] + ... + nums[r] * (1)<sup>r l</sup></code></p>
<p>你的任务是将 <code>nums</code> 分割成若干子数组,使得所有子数组的成本之和 <strong>最大化</strong>,并确保每个元素 <strong>正好 </strong>属于一个子数组。</p>
<p>具体来说,如果 <code>nums</code> 被分割成 <code>k</code> 个子数组,且分割点为索引 <code>i<sub>1</sub>, i<sub>2</sub>, ..., i<sub>k 1</sub></code>(其中 <code>0 &lt;= i<sub>1</sub> &lt; i<sub>2</sub> &lt; ... &lt; i<sub>k - 1</sub> &lt; n - 1</code>),则总成本为:</p>
<p><code>cost(0, i<sub>1</sub>) + cost(i<sub>1</sub> + 1, i<sub>2</sub>) + ... + cost(i<sub>k 1</sub> + 1, n 1)</code></p>
<p>返回在最优分割方式下的子数组成本之和的最大值。</p>
<p><strong>注意:</strong>如果 <code>nums</code> 没有被分割,即 <code>k = 1</code>,则总成本即为 <code>cost(0, n - 1)</code></p>
<p>&nbsp;</p>
<p><strong class="example">示例 1</strong></p>
<div class="example-block">
<p><strong>输入:</strong> <span class="example-io">nums = [1,-2,3,4]</span></p>
<p><strong>输出:</strong> <span class="example-io">10</span></p>
<p><strong>解释:</strong></p>
<p>一种总成本最大化的方法是将 <code>[1, -2, 3, 4]</code> 分割成子数组 <code>[1, -2, 3]</code><code>[4]</code>。总成本为 <code>(1 + 2 + 3) + 4 = 10</code></p>
</div>
<p><strong class="example">示例 2</strong></p>
<div class="example-block">
<p><strong>输入:</strong> <span class="example-io">nums = [1,-1,1,-1]</span></p>
<p><strong>输出:</strong> <span class="example-io">4</span></p>
<p><strong>解释:</strong></p>
<p>一种总成本最大化的方法是将 <code>[1, -1, 1, -1]</code> 分割成子数组 <code>[1, -1]</code><code>[1, -1]</code>。总成本为 <code>(1 + 1) + (1 + 1) = 4</code></p>
</div>
<p><strong class="example">示例 3</strong></p>
<div class="example-block">
<p><strong>输入:</strong> <span class="example-io">nums = [0]</span></p>
<p><strong>输出:</strong> 0</p>
<p><strong>解释:</strong></p>
<p>无法进一步分割数组,因此答案为 0。</p>
</div>
<p><strong class="example">示例 4</strong></p>
<div class="example-block">
<p><strong>输入:</strong> <span class="example-io">nums = [1,-1]</span></p>
<p><strong>输出:</strong> <span class="example-io">2</span></p>
<p><strong>解释:</strong></p>
<p>选择整个数组,总成本为 <code>1 + 1 = 2</code>,这是可能的最大成本。</p>
</div>
<p>&nbsp;</p>
<p><strong>提示:</strong></p>
<ul>
<li><code>1 &lt;= nums.length &lt;= 10<sup>5</sup></code></li>
<li><code>-10<sup>9</sup> &lt;= nums[i] &lt;= 10<sup>9</sup></code></li>
</ul>