mirror of
				https://gitee.com/coder-xiaomo/leetcode-problemset
				synced 2025-11-04 19:53:12 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			38 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			38 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<p>Given an <code>m x n</code> integer matrix <code>matrix</code>, if an element is <code>0</code>, set its entire row and column to <code>0</code>'s.</p>
 | 
						|
 | 
						|
<p>You must do it <a href="https://en.wikipedia.org/wiki/In-place_algorithm" target="_blank">in place</a>.</p>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong>Example 1:</strong></p>
 | 
						|
<img alt="" src="https://assets.leetcode.com/uploads/2020/08/17/mat1.jpg" style="width: 450px; height: 169px;" />
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> matrix = [[1,1,1],[1,0,1],[1,1,1]]
 | 
						|
<strong>Output:</strong> [[1,0,1],[0,0,0],[1,0,1]]
 | 
						|
</pre>
 | 
						|
 | 
						|
<p><strong>Example 2:</strong></p>
 | 
						|
<img alt="" src="https://assets.leetcode.com/uploads/2020/08/17/mat2.jpg" style="width: 450px; height: 137px;" />
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> matrix = [[0,1,2,0],[3,4,5,2],[1,3,1,5]]
 | 
						|
<strong>Output:</strong> [[0,0,0,0],[0,4,5,0],[0,3,1,0]]
 | 
						|
</pre>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong>Constraints:</strong></p>
 | 
						|
 | 
						|
<ul>
 | 
						|
	<li><code>m == matrix.length</code></li>
 | 
						|
	<li><code>n == matrix[0].length</code></li>
 | 
						|
	<li><code>1 <= m, n <= 200</code></li>
 | 
						|
	<li><code>-2<sup>31</sup> <= matrix[i][j] <= 2<sup>31</sup> - 1</code></li>
 | 
						|
</ul>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong>Follow up:</strong></p>
 | 
						|
 | 
						|
<ul>
 | 
						|
	<li>A straightforward solution using <code>O(mn)</code> space is probably a bad idea.</li>
 | 
						|
	<li>A simple improvement uses <code>O(m + n)</code> space, but still not the best solution.</li>
 | 
						|
	<li>Could you devise a constant space solution?</li>
 | 
						|
</ul>
 |