1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
2022-03-29 12:55:24 +08:00

29 lines
1.2 KiB
HTML

<p>The <strong>n-queens</strong> puzzle is the problem of placing <code>n</code> queens on an <code>n x n</code> chessboard such that no two queens attack each other.</p>
<p>Given an integer <code>n</code>, return <em>all distinct solutions to the <strong>n-queens puzzle</strong></em>. You may return the answer in <strong>any order</strong>.</p>
<p>Each solution contains a distinct board configuration of the n-queens&#39; placement, where <code>&#39;Q&#39;</code> and <code>&#39;.&#39;</code> both indicate a queen and an empty space, respectively.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<img alt="" src="https://assets.leetcode.com/uploads/2020/11/13/queens.jpg" style="width: 600px; height: 268px;" />
<pre>
<strong>Input:</strong> n = 4
<strong>Output:</strong> [[&quot;.Q..&quot;,&quot;...Q&quot;,&quot;Q...&quot;,&quot;..Q.&quot;],[&quot;..Q.&quot;,&quot;Q...&quot;,&quot;...Q&quot;,&quot;.Q..&quot;]]
<strong>Explanation:</strong> There exist two distinct solutions to the 4-queens puzzle as shown above
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> n = 1
<strong>Output:</strong> [[&quot;Q&quot;]]
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>1 &lt;= n &lt;= 9</code></li>
</ul>