mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
49 lines
1.8 KiB
HTML
49 lines
1.8 KiB
HTML
<p>There are <code>3n</code> piles of coins of varying size, you and your friends will take piles of coins as follows:</p>
|
|
|
|
<ul>
|
|
<li>In each step, you will choose <strong>any </strong><code>3</code> piles of coins (not necessarily consecutive).</li>
|
|
<li>Of your choice, Alice will pick the pile with the maximum number of coins.</li>
|
|
<li>You will pick the next pile with the maximum number of coins.</li>
|
|
<li>Your friend Bob will pick the last pile.</li>
|
|
<li>Repeat until there are no more piles of coins.</li>
|
|
</ul>
|
|
|
|
<p>Given an array of integers <code>piles</code> where <code>piles[i]</code> is the number of coins in the <code>i<sup>th</sup></code> pile.</p>
|
|
|
|
<p>Return the maximum number of coins that you can have.</p>
|
|
|
|
<p> </p>
|
|
<p><strong>Example 1:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> piles = [2,4,1,2,7,8]
|
|
<strong>Output:</strong> 9
|
|
<strong>Explanation: </strong>Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with <strong>7</strong> coins and Bob the last one.
|
|
Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with <strong>2</strong> coins and Bob the last one.
|
|
The maximum number of coins which you can have are: 7 + 2 = 9.
|
|
On the other hand if we choose this arrangement (1, <strong>2</strong>, 8), (2, <strong>4</strong>, 7) you only get 2 + 4 = 6 coins which is not optimal.
|
|
</pre>
|
|
|
|
<p><strong>Example 2:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> piles = [2,4,5]
|
|
<strong>Output:</strong> 4
|
|
</pre>
|
|
|
|
<p><strong>Example 3:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> piles = [9,8,7,6,5,1,2,3,4]
|
|
<strong>Output:</strong> 18
|
|
</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>3 <= piles.length <= 10<sup>5</sup></code></li>
|
|
<li><code>piles.length % 3 == 0</code></li>
|
|
<li><code>1 <= piles[i] <= 10<sup>4</sup></code></li>
|
|
</ul>
|