mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
41 lines
2.4 KiB
HTML
41 lines
2.4 KiB
HTML
<p>You are given an integer <code>n</code>. There is an <strong>undirected</strong> graph with <code>n</code> vertices, numbered from <code>0</code> to <code>n - 1</code>. You are given a 2D integer array <code>edges</code> where <code>edges[i] = [a<sub>i</sub>, b<sub>i</sub>]</code> denotes that there exists an <strong>undirected</strong> edge connecting vertices <code>a<sub>i</sub></code> and <code>b<sub>i</sub></code>.</p>
|
|
|
|
<p>Return <em>the number of <strong>complete connected components</strong> of the graph</em>.</p>
|
|
|
|
<p>A <strong>connected component</strong> is a subgraph of a graph in which there exists a path between any two vertices, and no vertex of the subgraph shares an edge with a vertex outside of the subgraph.</p>
|
|
|
|
<p>A connected component is said to be <b>complete</b> if there exists an edge between every pair of its vertices.</p>
|
|
|
|
<p> </p>
|
|
<p><strong class="example">Example 1:</strong></p>
|
|
|
|
<p><strong class="example"><img alt="" src="https://assets.leetcode.com/uploads/2023/04/11/screenshot-from-2023-04-11-23-31-23.png" style="width: 671px; height: 270px;" /></strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> n = 6, edges = [[0,1],[0,2],[1,2],[3,4]]
|
|
<strong>Output:</strong> 3
|
|
<strong>Explanation:</strong> From the picture above, one can see that all of the components of this graph are complete.
|
|
</pre>
|
|
|
|
<p><strong class="example">Example 2:</strong></p>
|
|
|
|
<p><strong class="example"><img alt="" src="https://assets.leetcode.com/uploads/2023/04/11/screenshot-from-2023-04-11-23-32-00.png" style="width: 671px; height: 270px;" /></strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> n = 6, edges = [[0,1],[0,2],[1,2],[3,4],[3,5]]
|
|
<strong>Output:</strong> 1
|
|
<strong>Explanation:</strong> The component containing vertices 0, 1, and 2 is complete since there is an edge between every pair of two vertices. On the other hand, the component containing vertices 3, 4, and 5 is not complete since there is no edge between vertices 4 and 5. Thus, the number of complete components in this graph is 1.
|
|
</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= n <= 50</code></li>
|
|
<li><code>0 <= edges.length <= n * (n - 1) / 2</code></li>
|
|
<li><code>edges[i].length == 2</code></li>
|
|
<li><code>0 <= a<sub>i</sub>, b<sub>i</sub> <= n - 1</code></li>
|
|
<li><code>a<sub>i</sub> != b<sub>i</sub></code></li>
|
|
<li>There are no repeated edges.</li>
|
|
</ul>
|