mirror of
				https://gitee.com/coder-xiaomo/leetcode-problemset
				synced 2025-11-04 03:33:12 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			45 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			HTML
		
	
	
	
	
	
<p>You are given a <strong>0-indexed</strong> array <code>nums</code> and an integer <code>target</code>.</p>
 | 
						|
 | 
						|
<p>A <strong>0-indexed</strong> array <code>infinite_nums</code> is generated by infinitely appending the elements of <code>nums</code> to itself.</p>
 | 
						|
 | 
						|
<p>Return <em>the length of the <strong>shortest</strong> subarray of the array </em><code>infinite_nums</code><em> with a sum equal to </em><code>target</code><em>.</em> If there is no such subarray return <code>-1</code>.</p>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong class="example">Example 1:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [1,2,3], target = 5
 | 
						|
<strong>Output:</strong> 2
 | 
						|
<strong>Explanation:</strong> In this example infinite_nums = [1,2,3,1,2,3,1,2,...].
 | 
						|
The subarray in the range [1,2], has the sum equal to target = 5 and length = 2.
 | 
						|
It can be proven that 2 is the shortest length of a subarray with sum equal to target = 5.
 | 
						|
</pre>
 | 
						|
 | 
						|
<p><strong class="example">Example 2:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [1,1,1,2,3], target = 4
 | 
						|
<strong>Output:</strong> 2
 | 
						|
<strong>Explanation:</strong> In this example infinite_nums = [1,1,1,2,3,1,1,1,2,3,1,1,...].
 | 
						|
The subarray in the range [4,5], has the sum equal to target = 4 and length = 2.
 | 
						|
It can be proven that 2 is the shortest length of a subarray with sum equal to target = 4.
 | 
						|
</pre>
 | 
						|
 | 
						|
<p><strong class="example">Example 3:</strong></p>
 | 
						|
 | 
						|
<pre>
 | 
						|
<strong>Input:</strong> nums = [2,4,6,8], target = 3
 | 
						|
<strong>Output:</strong> -1
 | 
						|
<strong>Explanation:</strong> In this example infinite_nums = [2,4,6,8,2,4,6,8,...].
 | 
						|
It can be proven that there is no subarray with sum equal to target = 3.
 | 
						|
</pre>
 | 
						|
 | 
						|
<p> </p>
 | 
						|
<p><strong>Constraints:</strong></p>
 | 
						|
 | 
						|
<ul>
 | 
						|
	<li><code>1 <= nums.length <= 10<sup>5</sup></code></li>
 | 
						|
	<li><code>1 <= nums[i] <= 10<sup>5</sup></code></li>
 | 
						|
	<li><code>1 <= target <= 10<sup>9</sup></code></li>
 | 
						|
</ul>
 |