mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
49 lines
1.9 KiB
HTML
49 lines
1.9 KiB
HTML
<p>A bus has <code>n</code> stops numbered from <code>0</code> to <code>n - 1</code> that form a circle. We know the distance between all pairs of neighboring stops where <code>distance[i]</code> is the distance between the stops number <code>i</code> and <code>(i + 1) % n</code>.</p>
|
|
|
|
<p>The bus goes along both directions i.e. clockwise and counterclockwise.</p>
|
|
|
|
<p>Return the shortest distance between the given <code>start</code> and <code>destination</code> stops.</p>
|
|
|
|
<p> </p>
|
|
<p><strong>Example 1:</strong></p>
|
|
|
|
<p><img alt="" src="https://assets.leetcode.com/uploads/2019/09/03/untitled-diagram-1.jpg" style="width: 388px; height: 240px;" /></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> distance = [1,2,3,4], start = 0, destination = 1
|
|
<strong>Output:</strong> 1
|
|
<strong>Explanation:</strong> Distance between 0 and 1 is 1 or 9, minimum is 1.</pre>
|
|
|
|
<p> </p>
|
|
|
|
<p><strong>Example 2:</strong></p>
|
|
|
|
<p><img alt="" src="https://assets.leetcode.com/uploads/2019/09/03/untitled-diagram-1-1.jpg" style="width: 388px; height: 240px;" /></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> distance = [1,2,3,4], start = 0, destination = 2
|
|
<strong>Output:</strong> 3
|
|
<strong>Explanation:</strong> Distance between 0 and 2 is 3 or 7, minimum is 3.
|
|
</pre>
|
|
|
|
<p> </p>
|
|
|
|
<p><strong>Example 3:</strong></p>
|
|
|
|
<p><img alt="" src="https://assets.leetcode.com/uploads/2019/09/03/untitled-diagram-1-2.jpg" style="width: 388px; height: 240px;" /></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> distance = [1,2,3,4], start = 0, destination = 3
|
|
<strong>Output:</strong> 4
|
|
<strong>Explanation:</strong> Distance between 0 and 3 is 6 or 4, minimum is 4.
|
|
</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>1 <= n <= 10^4</code></li>
|
|
<li><code>distance.length == n</code></li>
|
|
<li><code>0 <= start, destination < n</code></li>
|
|
<li><code>0 <= distance[i] <= 10^4</code></li>
|
|
</ul> |