mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
43 lines
2.1 KiB
HTML
43 lines
2.1 KiB
HTML
<p>如果序列 <code>X_1, X_2, ..., X_n</code> 满足下列条件,就说它是 <em>斐波那契式 </em>的:</p>
|
||
|
||
<ul>
|
||
<li><code>n >= 3</code></li>
|
||
<li>对于所有 <code>i + 2 <= n</code>,都有 <code>X_i + X_{i+1} = X_{i+2}</code></li>
|
||
</ul>
|
||
|
||
<p>给定一个<strong>严格递增</strong>的正整数数组形成序列 arr ,找到 <font color="#c7254e"><font face="Menlo, Monaco, Consolas, Courier New, monospace"><span style="font-size:12.600000381469727px"><span style="caret-color:#c7254e"><span style="background-color:#f9f2f4">arr</span></span></span></font></font> 中最长的斐波那契式的子序列的长度。如果一个不存在,返回 0 。</p>
|
||
|
||
<p><em>(回想一下,子序列是从原序列 <font color="#c7254e"><font face="Menlo, Monaco, Consolas, Courier New, monospace"><span style="font-size:12.600000381469727px"><span style="caret-color:#c7254e"><span style="background-color:#f9f2f4">arr</span></span></span></font></font> 中派生出来的,它从 <font color="#c7254e"><font face="Menlo, Monaco, Consolas, Courier New, monospace"><span style="font-size:12.600000381469727px"><span style="caret-color:#c7254e"><span style="background-color:#f9f2f4">arr</span></span></span></font></font> 中删掉任意数量的元素(也可以不删),而不改变其余元素的顺序。例如, <code>[3, 5, 8]</code> 是 <code>[3, 4, 5, 6, 7, 8]</code> 的一个子序列)</em></p>
|
||
|
||
<p> </p>
|
||
|
||
<ul>
|
||
</ul>
|
||
|
||
<p><strong>示例 1:</strong></p>
|
||
|
||
<pre>
|
||
<strong>输入: </strong>arr =<strong> </strong>[1,2,3,4,5,6,7,8]
|
||
<strong>输出: </strong>5
|
||
<strong>解释: </strong>最长的斐波那契式子序列为 [1,2,3,5,8] 。
|
||
</pre>
|
||
|
||
<p><strong>示例 2:</strong></p>
|
||
|
||
<pre>
|
||
<strong>输入: </strong>arr =<strong> </strong>[1,3,7,11,12,14,18]
|
||
<strong>输出: </strong>3
|
||
<strong>解释</strong>: 最长的斐波那契式子序列有 [1,11,12]、[3,11,14] 以及 [7,11,18] 。
|
||
</pre>
|
||
|
||
<p> </p>
|
||
|
||
<p><strong>提示:</strong></p>
|
||
|
||
<ul>
|
||
<li><code>3 <= arr.length <= 1000</code></li>
|
||
<li>
|
||
<p><code>1 <= arr[i] < arr[i + 1] <= 10^9</code></p>
|
||
</li>
|
||
</ul>
|