1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 02:58:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/算法题(国外版)/minimum-window-substring.html
2022-03-27 18:52:06 +08:00

44 lines
1.8 KiB
HTML

<p>Given two strings <code>s</code> and <code>t</code> of lengths <code>m</code> and <code>n</code> respectively, return <em>the <strong>minimum window substring</strong> of </em><code>s</code><em> such that every character in </em><code>t</code><em> (<strong>including duplicates</strong>) is included in the window. If there is no such substring</em><em>, return the empty string </em><code>&quot;&quot;</code><em>.</em></p>
<p>The testcases will be generated such that the answer is <strong>unique</strong>.</p>
<p>A <strong>substring</strong> is a contiguous sequence of characters within the string.</p>
<p>&nbsp;</p>
<p><strong>Example 1:</strong></p>
<pre>
<strong>Input:</strong> s = &quot;ADOBECODEBANC&quot;, t = &quot;ABC&quot;
<strong>Output:</strong> &quot;BANC&quot;
<strong>Explanation:</strong> The minimum window substring &quot;BANC&quot; includes &#39;A&#39;, &#39;B&#39;, and &#39;C&#39; from string t.
</pre>
<p><strong>Example 2:</strong></p>
<pre>
<strong>Input:</strong> s = &quot;a&quot;, t = &quot;a&quot;
<strong>Output:</strong> &quot;a&quot;
<strong>Explanation:</strong> The entire string s is the minimum window.
</pre>
<p><strong>Example 3:</strong></p>
<pre>
<strong>Input:</strong> s = &quot;a&quot;, t = &quot;aa&quot;
<strong>Output:</strong> &quot;&quot;
<strong>Explanation:</strong> Both &#39;a&#39;s from t must be included in the window.
Since the largest window of s only has one &#39;a&#39;, return empty string.
</pre>
<p>&nbsp;</p>
<p><strong>Constraints:</strong></p>
<ul>
<li><code>m == s.length</code></li>
<li><code>n == t.length</code></li>
<li><code>1 &lt;= m, n&nbsp;&lt;= 10<sup>5</sup></code></li>
<li><code>s</code> and <code>t</code> consist of uppercase and lowercase English letters.</li>
</ul>
<p>&nbsp;</p>
<strong>Follow up:</strong> Could you find an algorithm that runs in <code>O(m + n)</code> time?