1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-11 02:58:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/originData/find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance.json
2023-12-09 19:57:46 +08:00

183 lines
25 KiB
JSON
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"data": {
"question": {
"questionId": "1456",
"questionFrontendId": "1334",
"categoryTitle": "Algorithms",
"boundTopicId": 79199,
"title": "Find the City With the Smallest Number of Neighbors at a Threshold Distance",
"titleSlug": "find-the-city-with-the-smallest-number-of-neighbors-at-a-threshold-distance",
"content": "<p>There are <code>n</code> cities numbered from <code>0</code> to <code>n-1</code>. Given the array <code>edges</code> where <code>edges[i] = [from<sub>i</sub>, to<sub>i</sub>, weight<sub>i</sub>]</code> represents a bidirectional and weighted edge between cities <code>from<sub>i</sub></code> and <code>to<sub>i</sub></code>, and given the integer <code>distanceThreshold</code>.</p>\n\n<p>Return the city with the smallest number of cities that are reachable through some path and whose distance is <strong>at most</strong> <code>distanceThreshold</code>, If there are multiple such cities, return the city with the greatest number.</p>\n\n<p>Notice that the distance of a path connecting cities <em><strong>i</strong></em> and <em><strong>j</strong></em> is equal to the sum of the edges&#39; weights along that path.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2020/01/16/find_the_city_01.png\" style=\"width: 300px; height: 225px;\" />\n<pre>\n<strong>Input:</strong> n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4\n<strong>Output:</strong> 3\n<strong>Explanation: </strong>The figure above describes the graph.&nbsp;\nThe neighboring cities at a distanceThreshold = 4 for each city are:\nCity 0 -&gt; [City 1, City 2]&nbsp;\nCity 1 -&gt; [City 0, City 2, City 3]&nbsp;\nCity 2 -&gt; [City 0, City 1, City 3]&nbsp;\nCity 3 -&gt; [City 1, City 2]&nbsp;\nCities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.\n</pre>\n\n<p><strong class=\"example\">Example 2:</strong></p>\n<img alt=\"\" src=\"https://assets.leetcode.com/uploads/2020/01/16/find_the_city_02.png\" style=\"width: 300px; height: 225px;\" />\n<pre>\n<strong>Input:</strong> n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2\n<strong>Output:</strong> 0\n<strong>Explanation: </strong>The figure above describes the graph.&nbsp;\nThe neighboring cities at a distanceThreshold = 2 for each city are:\nCity 0 -&gt; [City 1]&nbsp;\nCity 1 -&gt; [City 0, City 4]&nbsp;\nCity 2 -&gt; [City 3, City 4]&nbsp;\nCity 3 -&gt; [City 2, City 4]\nCity 4 -&gt; [City 1, City 2, City 3]&nbsp;\nThe city 0 has 1 neighboring city at a distanceThreshold = 2.\n</pre>\n\n<p>&nbsp;</p>\n<p><strong>Constraints:</strong></p>\n\n<ul>\n\t<li><code>2 &lt;= n &lt;= 100</code></li>\n\t<li><code>1 &lt;= edges.length &lt;= n * (n - 1) / 2</code></li>\n\t<li><code>edges[i].length == 3</code></li>\n\t<li><code>0 &lt;= from<sub>i</sub> &lt; to<sub>i</sub> &lt; n</code></li>\n\t<li><code>1 &lt;= weight<sub>i</sub>,&nbsp;distanceThreshold &lt;= 10^4</code></li>\n\t<li>All pairs <code>(from<sub>i</sub>, to<sub>i</sub>)</code> are distinct.</li>\n</ul>\n",
"translatedTitle": "阈值距离内邻居最少的城市",
"translatedContent": "<p>有 <code>n</code> 个城市,按从 <code>0</code> 到 <code>n-1</code> 编号。给你一个边数组 <code>edges</code>,其中 <code>edges[i] = [from<sub>i</sub>, to<sub>i</sub>, weight<sub>i</sub>]</code> 代表 <code>from<sub>i</sub></code> 和 <code>to<sub>i</sub></code><sub> </sub>两个城市之间的双向加权边,距离阈值是一个整数 <code>distanceThreshold</code>。</p>\n\n<p>返回能通过某些路径到达其他城市数目最少、且路径距离 <strong>最大</strong> 为 <code>distanceThreshold</code> 的城市。如果有多个这样的城市,则返回编号最大的城市。</p>\n\n<p>注意,连接城市 <em><strong>i</strong></em> 和 <em><strong>j</strong></em> 的路径的距离等于沿该路径的所有边的权重之和。</p>\n\n<p> </p>\n\n<p><strong>示例 1</strong></p>\n\n<p><img alt=\"\" src=\"https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2020/01/26/find_the_city_01.png\" style=\"height: 225px; width: 300px;\" /></p>\n\n<pre>\n<strong>输入:</strong>n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4\n<strong>输出:</strong>3\n<strong>解释:</strong>城市分布图如上。\n每个城市阈值距离 distanceThreshold = 4 内的邻居城市分别是:\n城市 0 -> [城市 1, 城市 2] \n城市 1 -> [城市 0, 城市 2, 城市 3] \n城市 2 -> [城市 0, 城市 1, 城市 3] \n城市 3 -> [城市 1, 城市 2] \n城市 0 和 3 在阈值距离 4 以内都有 2 个邻居城市,但是我们必须返回城市 3因为它的编号最大。\n</pre>\n\n<p><strong>示例 2</strong></p>\n\n<p><strong><img alt=\"\" src=\"https://assets.leetcode-cn.com/aliyun-lc-upload/uploads/2020/01/26/find_the_city_02.png\" style=\"height: 225px; width: 300px;\" /></strong></p>\n\n<pre>\n<strong>输入:</strong>n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2\n<strong>输出:</strong>0\n<strong>解释:</strong>城市分布图如上。 \n每个城市阈值距离 distanceThreshold = 2 内的邻居城市分别是:\n城市 0 -> [城市 1] \n城市 1 -> [城市 0, 城市 4] \n城市 2 -> [城市 3, 城市 4] \n城市 3 -> [城市 2, 城市 4]\n城市 4 -> [城市 1, 城市 2, 城市 3] \n城市 0 在阈值距离 2 以内只有 1 个邻居城市。\n</pre>\n\n<p> </p>\n\n<p><strong>提示:</strong></p>\n\n<ul>\n\t<li><code>2 <= n <= 100</code></li>\n\t<li><code>1 <= edges.length <= n * (n - 1) / 2</code></li>\n\t<li><code>edges[i].length == 3</code></li>\n\t<li><code>0 <= from<sub>i</sub> < to<sub>i</sub> < n</code></li>\n\t<li><code>1 <= weight<sub>i</sub>, distanceThreshold <= 10^4</code></li>\n\t<li>所有 <code>(from<sub>i</sub>, to<sub>i</sub>)</code> 都是不同的。</li>\n</ul>\n",
"isPaidOnly": false,
"difficulty": "Medium",
"likes": 178,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": true, \"python\": true, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [
{
"name": "Graph",
"slug": "graph",
"translatedName": "图",
"__typename": "TopicTagNode"
},
{
"name": "Dynamic Programming",
"slug": "dynamic-programming",
"translatedName": "动态规划",
"__typename": "TopicTagNode"
},
{
"name": "Shortest Path",
"slug": "shortest-path",
"translatedName": "最短路",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "C++",
"langSlug": "cpp",
"code": "class Solution {\npublic:\n int findTheCity(int n, vector<vector<int>>& edges, int distanceThreshold) {\n\n }\n};",
"__typename": "CodeSnippetNode"
},
{
"lang": "Java",
"langSlug": "java",
"code": "class Solution {\n public int findTheCity(int n, int[][] edges, int distanceThreshold) {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Python",
"langSlug": "python",
"code": "class Solution(object):\n def findTheCity(self, n, edges, distanceThreshold):\n \"\"\"\n :type n: int\n :type edges: List[List[int]]\n :type distanceThreshold: int\n :rtype: int\n \"\"\"",
"__typename": "CodeSnippetNode"
},
{
"lang": "Python3",
"langSlug": "python3",
"code": "class Solution:\n def findTheCity(self, n: int, edges: List[List[int]], distanceThreshold: int) -> int:",
"__typename": "CodeSnippetNode"
},
{
"lang": "C",
"langSlug": "c",
"code": "int findTheCity(int n, int** edges, int edgesSize, int* edgesColSize, int distanceThreshold) {\n \n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "C#",
"langSlug": "csharp",
"code": "public class Solution {\n public int FindTheCity(int n, int[][] edges, int distanceThreshold) {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "JavaScript",
"langSlug": "javascript",
"code": "/**\n * @param {number} n\n * @param {number[][]} edges\n * @param {number} distanceThreshold\n * @return {number}\n */\nvar findTheCity = function(n, edges, distanceThreshold) {\n\n};",
"__typename": "CodeSnippetNode"
},
{
"lang": "TypeScript",
"langSlug": "typescript",
"code": "function findTheCity(n: number, edges: number[][], distanceThreshold: number): number {\n \n};",
"__typename": "CodeSnippetNode"
},
{
"lang": "PHP",
"langSlug": "php",
"code": "class Solution {\n\n /**\n * @param Integer $n\n * @param Integer[][] $edges\n * @param Integer $distanceThreshold\n * @return Integer\n */\n function findTheCity($n, $edges, $distanceThreshold) {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Swift",
"langSlug": "swift",
"code": "class Solution {\n func findTheCity(_ n: Int, _ edges: [[Int]], _ distanceThreshold: Int) -> Int {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Kotlin",
"langSlug": "kotlin",
"code": "class Solution {\n fun findTheCity(n: Int, edges: Array<IntArray>, distanceThreshold: Int): Int {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Dart",
"langSlug": "dart",
"code": "class Solution {\n int findTheCity(int n, List<List<int>> edges, int distanceThreshold) {\n \n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Go",
"langSlug": "golang",
"code": "func findTheCity(n int, edges [][]int, distanceThreshold int) int {\n\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Ruby",
"langSlug": "ruby",
"code": "# @param {Integer} n\n# @param {Integer[][]} edges\n# @param {Integer} distance_threshold\n# @return {Integer}\ndef find_the_city(n, edges, distance_threshold)\n\nend",
"__typename": "CodeSnippetNode"
},
{
"lang": "Scala",
"langSlug": "scala",
"code": "object Solution {\n def findTheCity(n: Int, edges: Array[Array[Int]], distanceThreshold: Int): Int = {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Rust",
"langSlug": "rust",
"code": "impl Solution {\n pub fn find_the_city(n: i32, edges: Vec<Vec<i32>>, distance_threshold: i32) -> i32 {\n\n }\n}",
"__typename": "CodeSnippetNode"
},
{
"lang": "Racket",
"langSlug": "racket",
"code": "(define/contract (find-the-city n edges distanceThreshold)\n (-> exact-integer? (listof (listof exact-integer?)) exact-integer? exact-integer?)\n )",
"__typename": "CodeSnippetNode"
},
{
"lang": "Erlang",
"langSlug": "erlang",
"code": "-spec find_the_city(N :: integer(), Edges :: [[integer()]], DistanceThreshold :: integer()) -> integer().\nfind_the_city(N, Edges, DistanceThreshold) ->\n .",
"__typename": "CodeSnippetNode"
},
{
"lang": "Elixir",
"langSlug": "elixir",
"code": "defmodule Solution do\n @spec find_the_city(n :: integer, edges :: [[integer]], distance_threshold :: integer) :: integer\n def find_the_city(n, edges, distance_threshold) do\n \n end\nend",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"27.5K\", \"totalSubmission\": \"45.2K\", \"totalAcceptedRaw\": 27501, \"totalSubmissionRaw\": 45160, \"acRate\": \"60.9%\"}",
"hints": [
"Use Floyd-Warshall's algorithm to compute any-point to any-point distances. (Or can also do Dijkstra from every node due to the weights are non-negative).",
"For each city calculate the number of reachable cities within the threshold, then search for the optimal city."
],
"solution": null,
"status": null,
"sampleTestCase": "4\n[[0,1,3],[1,2,1],[1,3,4],[2,3,1]]\n4",
"metaData": "{\n \"name\": \"findTheCity\",\n \"params\": [\n {\n \"name\": \"n\",\n \"type\": \"integer\"\n },\n {\n \"type\": \"integer[][]\",\n \"name\": \"edges\"\n },\n {\n \"type\": \"integer\",\n \"name\": \"distanceThreshold\"\n }\n ],\n \"return\": {\n \"type\": \"integer\"\n }\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"envInfo": "{\"cpp\":[\"C++\",\"<p>\\u7248\\u672c\\uff1a<code>clang 11<\\/code> \\u91c7\\u7528\\u6700\\u65b0C++ 20\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n<p>\\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528<code>-O2<\\/code>\\u7ea7\\u4f18\\u5316\\u3002<a href=\\\"https:\\/\\/github.com\\/google\\/sanitizers\\/wiki\\/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer<\\/a> \\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b<code>out-of-bounds<\\/code>\\u548c<code>use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\"],\"java\":[\"Java\",\"<p>\\u7248\\u672c\\uff1a<code>OpenJDK 17<\\/code>\\u3002\\u53ef\\u4ee5\\u4f7f\\u7528Java 8\\u7684\\u7279\\u6027\\u4f8b\\u5982\\uff0clambda expressions \\u548c stream API\\u3002<\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u88ab\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n<p>\\u5305\\u542b Pair \\u7c7b: https:\\/\\/docs.oracle.com\\/javase\\/8\\/javafx\\/api\\/javafx\\/util\\/Pair.html <\\/p>\"],\"python\":[\"Python\",\"<p>\\u7248\\u672c\\uff1a <code>Python 2.7.12<\\/code><\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982\\uff1a<a href=\\\"https:\\/\\/docs.python.org\\/2\\/library\\/array.html\\\" target=\\\"_blank\\\">array<\\/a>, <a href=\\\"https:\\/\\/docs.python.org\\/2\\/library\\/bisect.html\\\" target=\\\"_blank\\\">bisect<\\/a>, <a href=\\\"https:\\/\\/docs.python.org\\/2\\/library\\/collections.html\\\" target=\\\"_blank\\\">collections<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n<p>\\u6ce8\\u610f Python 2.7 <a href=\\\"https:\\/\\/www.python.org\\/dev\\/peps\\/pep-0373\\/\\\" target=\\\"_blank\\\">\\u5c06\\u57282020\\u5e74\\u540e\\u4e0d\\u518d\\u7ef4\\u62a4<\\/a>\\u3002 \\u5982\\u60f3\\u4f7f\\u7528\\u6700\\u65b0\\u7248\\u7684Python\\uff0c\\u8bf7\\u9009\\u62e9Python 3\\u3002<\\/p>\"],\"c\":[\"C\",\"<p>\\u7248\\u672c\\uff1a<code>GCC 8.2<\\/code>\\uff0c\\u91c7\\u7528GNU11\\u6807\\u51c6\\u3002<\\/p>\\r\\n\\r\\n<p>\\u7f16\\u8bd1\\u65f6\\uff0c\\u5c06\\u4f1a\\u91c7\\u7528<code>-O1<\\/code>\\u7ea7\\u4f18\\u5316\\u3002 <a href=\\\"https:\\/\\/github.com\\/google\\/sanitizers\\/wiki\\/AddressSanitizer\\\" target=\\\"_blank\\\">AddressSanitizer<\\/a>\\u4e5f\\u88ab\\u5f00\\u542f\\u6765\\u68c0\\u6d4b<code>out-of-bounds<\\/code>\\u548c<code>use-after-free<\\/code>\\u9519\\u8bef\\u3002<\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u4f7f\\u7528\\u65b9\\u4fbf\\uff0c\\u5927\\u90e8\\u5206\\u6807\\u51c6\\u5e93\\u7684\\u5934\\u6587\\u4ef6\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n<p>\\u5982\\u60f3\\u4f7f\\u7528\\u54c8\\u5e0c\\u8868\\u8fd0\\u7b97, \\u60a8\\u53ef\\u4ee5\\u4f7f\\u7528 <a href=\\\"https:\\/\\/troydhanson.github.io\\/uthash\\/\\\" target=\\\"_blank\\\">uthash<\\/a>\\u3002 \\\"uthash.h\\\"\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5bfc\\u5165\\u3002\\u8bf7\\u770b\\u5982\\u4e0b\\u793a\\u4f8b:<\\/p>\\r\\n\\r\\n<p><b>1. \\u5f80\\u54c8\\u5e0c\\u8868\\u4e2d\\u6dfb\\u52a0\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n<pre>\\r\\nstruct hash_entry {\\r\\n int id; \\/* we'll use this field as the key *\\/\\r\\n char name[10];\\r\\n UT_hash_handle hh; \\/* makes this structure hashable *\\/\\r\\n};\\r\\n\\r\\nstruct hash_entry *users = NULL;\\r\\n\\r\\nvoid add_user(struct hash_entry *s) {\\r\\n HASH_ADD_INT(users, id, s);\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n<p><b>2. \\u5728\\u54c8\\u5e0c\\u8868\\u4e2d\\u67e5\\u627e\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n<pre>\\r\\nstruct hash_entry *find_user(int user_id) {\\r\\n struct hash_entry *s;\\r\\n HASH_FIND_INT(users, &user_id, s);\\r\\n return s;\\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\\r\\n\\r\\n<p><b>3. \\u4ece\\u54c8\\u5e0c\\u8868\\u4e2d\\u5220\\u9664\\u4e00\\u4e2a\\u5bf9\\u8c61\\uff1a<\\/b>\\r\\n<pre>\\r\\nvoid delete_user(struct hash_entry *user) {\\r\\n HASH_DEL(users, user); \\r\\n}\\r\\n<\\/pre>\\r\\n<\\/p>\"],\"csharp\":[\"C#\",\"<p><a href=\\\"https:\\/\\/docs.microsoft.com\\/en-us\\/dotnet\\/csharp\\/whats-new\\/csharp-9\\\" target=\\\"_blank\\\">C# 10<\\/a> \\u8fd0\\u884c\\u5728 .NET 6 \\u4e0a<\\/p>\"],\"javascript\":[\"JavaScript\",\"<p>\\u7248\\u672c\\uff1a<code>Node.js 16.13.2<\\/code><\\/p>\\r\\n\\r\\n<p>\\u60a8\\u7684\\u4ee3\\u7801\\u5728\\u6267\\u884c\\u65f6\\u5c06\\u5e26\\u4e0a <code>--harmony<\\/code> \\u6807\\u8bb0\\u6765\\u5f00\\u542f <a href=\\\"http:\\/\\/node.green\\/\\\" target=\\\"_blank\\\">\\u65b0\\u7248ES6\\u7279\\u6027<\\/a>\\u3002<\\/p>\\r\\n\\r\\n<p><a href=\\\"https:\\/\\/lodash.com\\\" target=\\\"_blank\\\">lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n<p> \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 <a href=\\\"https:\\/\\/github.com\\/datastructures-js\\/priority-queue\\/tree\\/fb4fdb984834421279aeb081df7af624d17c2a03\\\" target=\\\"_blank\\\"> datastructures-js\\/priority-queue@5.3.0<\\/a> \\u548c <a href=\\\"https:\\/\\/github.com\\/datastructures-js\\/queue\\/tree\\/e63563025a5a805aa16928cb53bcd517bfea9230\\\" target=\\\"_blank\\\"> datastructures-js\\/queue@4.2.1<\\/a>\\u3002<\\/p>\"],\"ruby\":[\"Ruby\",\"<p>\\u4f7f\\u7528<code>Ruby 3.1<\\/code>\\u6267\\u884c<\\/p>\\r\\n\\r\\n<p>\\u4e00\\u4e9b\\u5e38\\u7528\\u7684\\u6570\\u636e\\u7ed3\\u6784\\u5df2\\u5728 Algorithms \\u6a21\\u5757\\u4e2d\\u63d0\\u4f9b\\uff1ahttps:\\/\\/www.rubydoc.info\\/github\\/kanwei\\/algorithms\\/Algorithms<\\/p>\"],\"swift\":[\"Swift\",\"<p>\\u7248\\u672c\\uff1a<code>Swift 5.5.2<\\/code><\\/p>\\r\\n\\r\\n<p>\\u6211\\u4eec\\u901a\\u5e38\\u4fdd\\u8bc1\\u66f4\\u65b0\\u5230 <a href=\\\"https:\\/\\/swift.org\\/download\\/\\\" target=\\\"_blank\\\">Apple\\u653e\\u51fa\\u7684\\u6700\\u65b0\\u7248Swift<\\/a>\\u3002\\u5982\\u679c\\u60a8\\u53d1\\u73b0Swift\\u4e0d\\u662f\\u6700\\u65b0\\u7248\\u7684\\uff0c\\u8bf7\\u8054\\u7cfb\\u6211\\u4eec\\uff01\\u6211\\u4eec\\u5c06\\u5c3d\\u5feb\\u66f4\\u65b0\\u3002<\\/p>\"],\"golang\":[\"Go\",\"<p>\\u7248\\u672c\\uff1a<code>Go 1.21<\\/code><\\/p>\\r\\n\\r\\n<p>\\u652f\\u6301 <a href=\\\"https:\\/\\/github.com\\/emirpasic\\/gods\\/tree\\/v1.18.1\\\" target=\\\"_blank\\\">https:\\/\\/godoc.org\\/github.com\\/emirpasic\\/gods@v1.18.1<\\/a> \\u7b2c\\u4e09\\u65b9\\u5e93\\u3002<\\/p>\"],\"python3\":[\"Python3\",\"<p>\\u7248\\u672c\\uff1a<code>Python 3.10<\\/code><\\/p>\\r\\n\\r\\n<p>\\u4e3a\\u4e86\\u65b9\\u4fbf\\u8d77\\u89c1\\uff0c\\u5927\\u90e8\\u5206\\u5e38\\u7528\\u5e93\\u5df2\\u7ecf\\u88ab\\u81ea\\u52a8 \\u5bfc\\u5165\\uff0c\\u5982<a href=\\\"https:\\/\\/docs.python.org\\/3\\/library\\/array.html\\\" target=\\\"_blank\\\">array<\\/a>, <a href=\\\"https:\\/\\/docs.python.org\\/3\\/library\\/bisect.html\\\" target=\\\"_blank\\\">bisect<\\/a>, <a href=\\\"https:\\/\\/docs.python.org\\/3\\/library\\/collections.html\\\" target=\\\"_blank\\\">collections<\\/a>\\u3002 \\u5982\\u679c\\u60a8\\u9700\\u8981\\u4f7f\\u7528\\u5176\\u4ed6\\u5e93\\u51fd\\u6570\\uff0c\\u8bf7\\u81ea\\u884c\\u5bfc\\u5165\\u3002<\\/p>\\r\\n\\r\\n<p>\\u5982\\u9700\\u4f7f\\u7528 Map\\/TreeMap \\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 <a href=\\\"http:\\/\\/www.grantjenks.com\\/docs\\/sortedcontainers\\/\\\" target=\\\"_blank\\\">sortedcontainers<\\/a> \\u5e93\\u3002<\\/p>\"],\"scala\":[\"Scala\",\"<p>\\u7248\\u672c\\uff1a<code>Scala 2.13<\\/code><\\/p>\"],\"kotlin\":[\"Kotlin\",\"<p>\\u7248\\u672c\\uff1a<code>Kotlin 1.9.0<\\/code><\\/p>\\r\\n\\r\\n<p>\\u6211\\u4eec\\u4f7f\\u7528\\u7684\\u662f JetBrains \\u63d0\\u4f9b\\u7684 experimental compiler\\u3002\\u5982\\u679c\\u60a8\\u8ba4\\u4e3a\\u60a8\\u9047\\u5230\\u4e86\\u7f16\\u8bd1\\u5668\\u76f8\\u5173\\u7684\\u95ee\\u9898\\uff0c\\u8bf7\\u5411\\u6211\\u4eec\\u53cd\\u9988<\\/p>\"],\"rust\":[\"Rust\",\"<p>\\u7248\\u672c\\uff1a<code>rust 1.58.1<\\/code><\\/p>\\r\\n\\r\\n<p>\\u652f\\u6301 crates.io \\u7684 <a href=\\\"https:\\/\\/crates.io\\/crates\\/rand\\\" target=\\\"_blank\\\">rand<\\/a><\\/p>\"],\"php\":[\"PHP\",\"<p><code>PHP 8.1<\\/code>.<\\/p>\\r\\n\\r\\n<p>With bcmath module.<\\/p>\"],\"typescript\":[\"TypeScript\",\"<p>TypeScript 5.1.6<\\/p>\\r\\n\\r\\n<p>Compile Options: --alwaysStrict --strictBindCallApply --strictFunctionTypes --target ES2022<\\/p>\\r\\n\\r\\n<p><a href=\\\"https:\\/\\/lodash.com\\\" target=\\\"_blank\\\">lodash.js<\\/a> \\u5e93\\u5df2\\u7ecf\\u9ed8\\u8ba4\\u88ab\\u5305\\u542b\\u3002<\\/p>\\r\\n\\r\\n<p> \\u5982\\u9700\\u4f7f\\u7528\\u961f\\u5217\\/\\u4f18\\u5148\\u961f\\u5217\\uff0c\\u60a8\\u53ef\\u4f7f\\u7528 <a href=\\\"https:\\/\\/github.com\\/datastructures-js\\/priority-queue\\/tree\\/fb4fdb984834421279aeb081df7af624d17c2a03\\\" target=\\\"_blank\\\"> datastructures-js\\/priority-queue@5.3.0<\\/a> \\u548c <a href=\\\"https:\\/\\/github.com\\/datastructures-js\\/queue\\/tree\\/e63563025a5a805aa16928cb53bcd517bfea9230\\\" target=\\\"_blank\\\"> datastructures-js\\/queue@4.2.1<\\/a>\\u3002<\\/p>\"],\"racket\":[\"Racket\",\"<p><a href=\\\"https:\\/\\/docs.racket-lang.org\\/guide\\/performance.html#%28tech._c%29\\\" target=\\\"_blank\\\">Racket CS<\\/a> v8.3<\\/p>\\r\\n\\r\\n<p>\\u4f7f\\u7528 #lang racket<\\/p>\\r\\n\\r\\n<p>\\u5df2\\u9884\\u5148 (require data\\/gvector data\\/queue data\\/order data\\/heap). \\u82e5\\u9700\\u4f7f\\u7528\\u5176\\u5b83\\u6570\\u636e\\u7ed3\\u6784\\uff0c\\u53ef\\u81ea\\u884c require\\u3002<\\/p>\"],\"erlang\":[\"Erlang\",\"Erlang\\/OTP 24.2\"],\"elixir\":[\"Elixir\",\"Elixir 1.13.0 with Erlang\\/OTP 24.2\"],\"dart\":[\"Dart\",\"<p>Dart 2.17.3<\\/p>\\r\\n\\r\\n<p>\\u60a8\\u7684\\u4ee3\\u7801\\u5c06\\u4f1a\\u88ab\\u4e0d\\u7f16\\u8bd1\\u76f4\\u63a5\\u8fd0\\u884c<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "4\n[[0,1,3],[1,2,1],[1,3,4],[2,3,1]]\n4\n5\n[[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]]\n2",
"__typename": "QuestionNode"
}
}
}