1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-26 18:20:27 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode/originData/average-selling-price.json
2023-12-09 19:57:46 +08:00

101 lines
9.7 KiB
JSON

{
"data": {
"question": {
"questionId": "1390",
"questionFrontendId": "1251",
"boundTopicId": null,
"title": "Average Selling Price",
"titleSlug": "average-selling-price",
"content": "<p>Table: <code>Prices</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| start_date | date |\n| end_date | date |\n| price | int |\n+---------------+---------+\n(product_id, start_date, end_date) is the primary key (combination of columns with unique values) for this table.\nEach row of this table indicates the price of the product_id in the period from start_date to end_date.\nFor each product_id there will be no two overlapping periods. That means there will be no two intersecting periods for the same product_id.\n</pre>\n\n<p>&nbsp;</p>\n\n<p>Table: <code>UnitsSold</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| purchase_date | date |\n| units | int |\n+---------------+---------+\nThis table may contain duplicate rows.\nEach row of this table indicates the date, units, and product_id of each product sold. \n</pre>\n\n<p>&nbsp;</p>\n\n<p>Write a solution to find the average selling price for each product. <code>average_price</code> should be <strong>rounded to 2 decimal places</strong>.</p>\n\n<p>Return the result table in <strong>any order</strong>.</p>\n\n<p>The&nbsp;result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nPrices table:\n+------------+------------+------------+--------+\n| product_id | start_date | end_date | price |\n+------------+------------+------------+--------+\n| 1 | 2019-02-17 | 2019-02-28 | 5 |\n| 1 | 2019-03-01 | 2019-03-22 | 20 |\n| 2 | 2019-02-01 | 2019-02-20 | 15 |\n| 2 | 2019-02-21 | 2019-03-31 | 30 |\n+------------+------------+------------+--------+\nUnitsSold table:\n+------------+---------------+-------+\n| product_id | purchase_date | units |\n+------------+---------------+-------+\n| 1 | 2019-02-25 | 100 |\n| 1 | 2019-03-01 | 15 |\n| 2 | 2019-02-10 | 200 |\n| 2 | 2019-03-22 | 30 |\n+------------+---------------+-------+\n<strong>Output:</strong> \n+------------+---------------+\n| product_id | average_price |\n+------------+---------------+\n| 1 | 6.96 |\n| 2 | 16.96 |\n+------------+---------------+\n<strong>Explanation:</strong> \nAverage selling price = Total Price of Product / Number of products sold.\nAverage selling price for product 1 = ((100 * 5) + (15 * 20)) / 115 = 6.96\nAverage selling price for product 2 = ((200 * 15) + (30 * 30)) / 230 = 16.96\n</pre>\n",
"translatedTitle": null,
"translatedContent": null,
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 860,
"dislikes": 89,
"isLiked": null,
"similarQuestions": "[]",
"exampleTestcases": "{\"headers\":{\"Prices\":[\"product_id\",\"start_date\",\"end_date\",\"price\"],\"UnitsSold\":[\"product_id\",\"purchase_date\",\"units\"]},\"rows\":{\"Prices\":[[1,\"2019-02-17\",\"2019-02-28\",5],[1,\"2019-03-01\",\"2019-03-22\",20],[2,\"2019-02-01\",\"2019-02-20\",15],[2,\"2019-02-21\",\"2019-03-31\",30]],\"UnitsSold\":[[1,\"2019-02-25\",100],[1,\"2019-03-01\",15],[2,\"2019-02-10\",200],[2,\"2019-03-22\",30]]}}",
"categoryTitle": "Database",
"contributors": [],
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": null,
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "MySQL",
"langSlug": "mysql",
"code": "# Write your MySQL query statement below\n",
"__typename": "CodeSnippetNode"
},
{
"lang": "MS SQL Server",
"langSlug": "mssql",
"code": "/* Write your T-SQL query statement below */\n",
"__typename": "CodeSnippetNode"
},
{
"lang": "Oracle",
"langSlug": "oraclesql",
"code": "/* Write your PL/SQL query statement below */\n",
"__typename": "CodeSnippetNode"
},
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef average_selling_price(prices: pd.DataFrame, units_sold: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "PostgreSQL",
"langSlug": "postgresql",
"code": "-- Write your PostgreSQL query statement below\n",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"133.3K\", \"totalSubmission\": \"262K\", \"totalAcceptedRaw\": 133309, \"totalSubmissionRaw\": 261962, \"acRate\": \"50.9%\"}",
"hints": [],
"solution": {
"id": "2138",
"canSeeDetail": true,
"paidOnly": false,
"hasVideoSolution": false,
"paidOnlyVideo": true,
"__typename": "ArticleNode"
},
"status": null,
"sampleTestCase": "{\"headers\":{\"Prices\":[\"product_id\",\"start_date\",\"end_date\",\"price\"],\"UnitsSold\":[\"product_id\",\"purchase_date\",\"units\"]},\"rows\":{\"Prices\":[[1,\"2019-02-17\",\"2019-02-28\",5],[1,\"2019-03-01\",\"2019-03-22\",20],[2,\"2019-02-01\",\"2019-02-20\",15],[2,\"2019-02-21\",\"2019-03-31\",30]],\"UnitsSold\":[[1,\"2019-02-25\",100],[1,\"2019-03-01\",15],[2,\"2019-02-10\",200],[2,\"2019-03-22\",30]]}}",
"metaData": "{\"mysql\": [\"Create table If Not Exists Prices (product_id int, start_date date, end_date date, price int)\", \"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)\"], \"mssql\": [\"Create table Prices (product_id int, start_date date, end_date date, price int)\", \"Create table UnitsSold (product_id int, purchase_date date, units int)\"], \"oraclesql\": [\"Create table Prices (product_id int, start_date date, end_date date, price int)\", \"Create table UnitsSold (product_id int, purchase_date date, units int)\", \"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"], \"database\": true, \"name\": \"average_selling_price\", \"pythondata\": [\"Prices = pd.DataFrame([], columns=['product_id', 'start_date', 'end_date', 'price']).astype({'product_id':'Int64', 'start_date':'datetime64[ns]', 'end_date':'datetime64[ns]', 'price':'Int64'})\", \"UnitsSold = pd.DataFrame([], columns=['product_id', 'purchase_date', 'units']).astype({'product_id':'Int64', 'purchase_date':'datetime64[ns]', 'units':'Int64'})\"], \"postgresql\": [\"\\nCreate table If Not Exists Prices (product_id int, start_date date, end_date date, price int)\\n\", \"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)\"], \"database_schema\": {\"Prices\": {\"product_id\": \"INT\", \"start_date\": \"DATE\", \"end_date\": \"DATE\", \"price\": \"INT\"}, \"UnitsSold\": {\"product_id\": \"INT\", \"purchase_date\": \"DATE\", \"units\": \"INT\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table If Not Exists Prices (product_id int, start_date date, end_date date, price int)",
"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)",
"Truncate table Prices",
"insert into Prices (product_id, start_date, end_date, price) values ('1', '2019-02-17', '2019-02-28', '5')",
"insert into Prices (product_id, start_date, end_date, price) values ('1', '2019-03-01', '2019-03-22', '20')",
"insert into Prices (product_id, start_date, end_date, price) values ('2', '2019-02-01', '2019-02-20', '15')",
"insert into Prices (product_id, start_date, end_date, price) values ('2', '2019-02-21', '2019-03-31', '30')",
"Truncate table UnitsSold",
"insert into UnitsSold (product_id, purchase_date, units) values ('1', '2019-02-25', '100')",
"insert into UnitsSold (product_id, purchase_date, units) values ('1', '2019-03-01', '15')",
"insert into UnitsSold (product_id, purchase_date, units) values ('2', '2019-02-10', '200')",
"insert into UnitsSold (product_id, purchase_date, units) values ('2', '2019-03-22', '30')"
],
"enableRunCode": true,
"enableTestMode": false,
"enableDebugger": false,
"envInfo": "{\"mysql\": [\"MySQL\", \"<p><code>MySQL 8.0</code>.</p>\"], \"mssql\": [\"MS SQL Server\", \"<p><code>mssql server 2019</code>.</p>\"], \"oraclesql\": [\"Oracle\", \"<p><code>Oracle Sql 11.2</code>.</p>\"], \"pythondata\": [\"Pandas\", \"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0</p>\"], \"postgresql\": [\"PostgreSQL\", \"<p>PostgreSQL 16</p>\"]}",
"libraryUrl": null,
"adminUrl": null,
"challengeQuestion": null,
"__typename": "QuestionNode"
}
}
}