1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-10 18:48:13 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/originData/average-selling-price.json
2023-12-09 19:57:46 +08:00

97 lines
13 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"data": {
"question": {
"questionId": "1390",
"questionFrontendId": "1251",
"categoryTitle": "Database",
"boundTopicId": 41811,
"title": "Average Selling Price",
"titleSlug": "average-selling-price",
"content": "<p>Table: <code>Prices</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| start_date | date |\n| end_date | date |\n| price | int |\n+---------------+---------+\n(product_id, start_date, end_date) is the primary key (combination of columns with unique values) for this table.\nEach row of this table indicates the price of the product_id in the period from start_date to end_date.\nFor each product_id there will be no two overlapping periods. That means there will be no two intersecting periods for the same product_id.\n</pre>\n\n<p>&nbsp;</p>\n\n<p>Table: <code>UnitsSold</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| purchase_date | date |\n| units | int |\n+---------------+---------+\nThis table may contain duplicate rows.\nEach row of this table indicates the date, units, and product_id of each product sold. \n</pre>\n\n<p>&nbsp;</p>\n\n<p>Write a solution to find the average selling price for each product. <code>average_price</code> should be <strong>rounded to 2 decimal places</strong>.</p>\n\n<p>Return the result table in <strong>any order</strong>.</p>\n\n<p>The&nbsp;result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:</strong> \nPrices table:\n+------------+------------+------------+--------+\n| product_id | start_date | end_date | price |\n+------------+------------+------------+--------+\n| 1 | 2019-02-17 | 2019-02-28 | 5 |\n| 1 | 2019-03-01 | 2019-03-22 | 20 |\n| 2 | 2019-02-01 | 2019-02-20 | 15 |\n| 2 | 2019-02-21 | 2019-03-31 | 30 |\n+------------+------------+------------+--------+\nUnitsSold table:\n+------------+---------------+-------+\n| product_id | purchase_date | units |\n+------------+---------------+-------+\n| 1 | 2019-02-25 | 100 |\n| 1 | 2019-03-01 | 15 |\n| 2 | 2019-02-10 | 200 |\n| 2 | 2019-03-22 | 30 |\n+------------+---------------+-------+\n<strong>Output:</strong> \n+------------+---------------+\n| product_id | average_price |\n+------------+---------------+\n| 1 | 6.96 |\n| 2 | 16.96 |\n+------------+---------------+\n<strong>Explanation:</strong> \nAverage selling price = Total Price of Product / Number of products sold.\nAverage selling price for product 1 = ((100 * 5) + (15 * 20)) / 115 = 6.96\nAverage selling price for product 2 = ((200 * 15) + (30 * 30)) / 230 = 16.96\n</pre>\n",
"translatedTitle": "平均售价",
"translatedContent": "<p>表:<code>Prices</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| start_date | date |\n| end_date | date |\n| price | int |\n+---------------+---------+\n(product_idstart_dateend_date) 是 <code>prices</code> 表的主键(具有唯一值的列的组合)。\n<code>prices</code> 表的每一行表示的是某个产品在一段时期内的价格。\n每个产品的对应时间段是不会重叠的这也意味着同一个产品的价格时段不会出现交叉。</pre>\n\n<p>&nbsp;</p>\n\n<p>表:<code>UnitsSold</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| purchase_date | date |\n| units | int |\n+---------------+---------+\n<span style=\"white-space: pre-wrap;\">该表可能包含重复数据</span>。\n<span style=\"white-space: pre-wrap;\">该</span>表的每一行表示的是每种产品的出售日期,单位和产品 id。</pre>\n\n<p>&nbsp;</p>\n\n<p>编写解决方案以查找每种产品的平均售价。<code>average_price</code> 应该 <strong>四舍五入到小数点后两位</strong>。</p>\n\n<p>返回结果表 <strong>无顺序要求</strong> 。</p>\n\n<p>结果格式如下例所示。</p>\n\n<p>&nbsp;</p>\n\n<p><strong>示例 1</strong></p>\n\n<pre>\n<strong>输入:</strong>\nPrices table:\n+------------+------------+------------+--------+\n| product_id | start_date | end_date | price |\n+------------+------------+------------+--------+\n| 1 | 2019-02-17 | 2019-02-28 | 5 |\n| 1 | 2019-03-01 | 2019-03-22 | 20 |\n| 2 | 2019-02-01 | 2019-02-20 | 15 |\n| 2 | 2019-02-21 | 2019-03-31 | 30 |\n+------------+------------+------------+--------+\nUnitsSold table:\n+------------+---------------+-------+\n| product_id | purchase_date | units |\n+------------+---------------+-------+\n| 1 | 2019-02-25 | 100 |\n| 1 | 2019-03-01 | 15 |\n| 2 | 2019-02-10 | 200 |\n| 2 | 2019-03-22 | 30 |\n+------------+---------------+-------+\n<strong>输出:</strong>\n+------------+---------------+\n| product_id | average_price |\n+------------+---------------+\n| 1 | 6.96 |\n| 2 | 16.96 |\n+------------+---------------+\n<strong>解释:</strong>\n平均售价 = 产品总价 / 销售的产品数量。\n产品 1 的平均售价 = ((100 * 5)+(15 * 20) )/ 115 = 6.96\n产品 2 的平均售价 = ((200 * 15)+(30 * 30) )/ 230 = 16.96</pre>\n",
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 110,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": "数据库",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "MySQL",
"langSlug": "mysql",
"code": "# Write your MySQL query statement below",
"__typename": "CodeSnippetNode"
},
{
"lang": "MS SQL Server",
"langSlug": "mssql",
"code": "/* Write your T-SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Oracle",
"langSlug": "oraclesql",
"code": "/* Write your PL/SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef average_selling_price(prices: pd.DataFrame, units_sold: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "PostgreSQL",
"langSlug": "postgresql",
"code": "-- Write your PostgreSQL query statement below",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"36.8K\", \"totalSubmission\": \"64.6K\", \"totalAcceptedRaw\": 36788, \"totalSubmissionRaw\": 64602, \"acRate\": \"56.9%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"Prices\":[\"product_id\",\"start_date\",\"end_date\",\"price\"],\"UnitsSold\":[\"product_id\",\"purchase_date\",\"units\"]},\"rows\":{\"Prices\":[[1,\"2019-02-17\",\"2019-02-28\",5],[1,\"2019-03-01\",\"2019-03-22\",20],[2,\"2019-02-01\",\"2019-02-20\",15],[2,\"2019-02-21\",\"2019-03-31\",30]],\"UnitsSold\":[[1,\"2019-02-25\",100],[1,\"2019-03-01\",15],[2,\"2019-02-10\",200],[2,\"2019-03-22\",30]]}}",
"metaData": "{\"mysql\":[\"Create table If Not Exists Prices (product_id int, start_date date, end_date date, price int)\",\"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)\"],\"mssql\":[\"Create table Prices (product_id int, start_date date, end_date date, price int)\",\"Create table UnitsSold (product_id int, purchase_date date, units int)\"],\"oraclesql\":[\"Create table Prices (product_id int, start_date date, end_date date, price int)\",\"Create table UnitsSold (product_id int, purchase_date date, units int)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"average_selling_price\",\"pythondata\":[\"Prices = pd.DataFrame([], columns=['product_id', 'start_date', 'end_date', 'price']).astype({'product_id':'Int64', 'start_date':'datetime64[ns]', 'end_date':'datetime64[ns]', 'price':'Int64'})\",\"UnitsSold = pd.DataFrame([], columns=['product_id', 'purchase_date', 'units']).astype({'product_id':'Int64', 'purchase_date':'datetime64[ns]', 'units':'Int64'})\"],\"postgresql\":[\"\\nCreate table If Not Exists Prices (product_id int, start_date date, end_date date, price int)\\n\",\"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)\"],\"database_schema\":{\"Prices\":{\"product_id\":\"INT\",\"start_date\":\"DATE\",\"end_date\":\"DATE\",\"price\":\"INT\"},\"UnitsSold\":{\"product_id\":\"INT\",\"purchase_date\":\"DATE\",\"units\":\"INT\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"Create table If Not Exists Prices (product_id int, start_date date, end_date date, price int)",
"Create table If Not Exists UnitsSold (product_id int, purchase_date date, units int)",
"Truncate table Prices",
"insert into Prices (product_id, start_date, end_date, price) values ('1', '2019-02-17', '2019-02-28', '5')",
"insert into Prices (product_id, start_date, end_date, price) values ('1', '2019-03-01', '2019-03-22', '20')",
"insert into Prices (product_id, start_date, end_date, price) values ('2', '2019-02-01', '2019-02-20', '15')",
"insert into Prices (product_id, start_date, end_date, price) values ('2', '2019-02-21', '2019-03-31', '30')",
"Truncate table UnitsSold",
"insert into UnitsSold (product_id, purchase_date, units) values ('1', '2019-02-25', '100')",
"insert into UnitsSold (product_id, purchase_date, units) values ('1', '2019-03-01', '15')",
"insert into UnitsSold (product_id, purchase_date, units) values ('2', '2019-02-10', '200')",
"insert into UnitsSold (product_id, purchase_date, units) values ('2', '2019-03-22', '30')"
],
"enableRunCode": true,
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"Prices\":[\"product_id\",\"start_date\",\"end_date\",\"price\"],\"UnitsSold\":[\"product_id\",\"purchase_date\",\"units\"]},\"rows\":{\"Prices\":[[1,\"2019-02-17\",\"2019-02-28\",5],[1,\"2019-03-01\",\"2019-03-22\",20],[2,\"2019-02-01\",\"2019-02-20\",15],[2,\"2019-02-21\",\"2019-03-31\",30]],\"UnitsSold\":[[1,\"2019-02-25\",100],[1,\"2019-03-01\",15],[2,\"2019-02-10\",200],[2,\"2019-03-22\",30]]}}",
"__typename": "QuestionNode"
}
}
}