1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-09-05 15:31:43 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
Files
leetcode-problemset/leetcode-cn/originData/seasonal-sales-analysis.json
2025-06-18 01:10:28 +08:00

109 lines
22 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"data": {
"question": {
"questionId": "3898",
"questionFrontendId": "3564",
"categoryTitle": "Database",
"boundTopicId": 3686016,
"title": "Seasonal Sales Analysis",
"titleSlug": "seasonal-sales-analysis",
"content": "<p>Table: <code>sales</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| sale_id | int |\n| product_id | int |\n| sale_date | date |\n| quantity | int |\n| price | decimal |\n+---------------+---------+\nsale_id is the unique identifier for this table.\nEach row contains information about a product sale including the product_id, date of sale, quantity sold, and price per unit.\n</pre>\n\n<p>Table: <code>products</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| product_name | varchar |\n| category | varchar |\n+---------------+---------+\nproduct_id is the unique identifier for this table.\nEach row contains information about a product including its name and category.\n</pre>\n\n<p>Write a solution to find the most popular product category for each season. The seasons are defined as:</p>\n\n<ul>\n\t<li><strong>Winter</strong>: December, January, February</li>\n\t<li><strong>Spring</strong>: March, April, May</li>\n\t<li><strong>Summer</strong>: June, July, August</li>\n\t<li><strong>Fall</strong>: September, October, November</li>\n</ul>\n\n<p>The <strong>popularity</strong> of a <strong>category</strong> is determined by the <strong>total quantity sold</strong> in that <strong>season</strong>. If there is a <strong>tie</strong>, select the category with the highest <strong>total revenue</strong> (<code>quantity &times; price</code>).</p>\n\n<p>Return <em>the result table ordered by season in <strong>ascending</strong> order</em>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>Input:</strong></p>\n\n<p>sales table:</p>\n\n<pre class=\"example-io\">\n+---------+------------+------------+----------+-------+\n| sale_id | product_id | sale_date | quantity | price |\n+---------+------------+------------+----------+-------+\n| 1 | 1 | 2023-01-15 | 5 | 10.00 |\n| 2 | 2 | 2023-01-20 | 4 | 15.00 |\n| 3 | 3 | 2023-03-10 | 3 | 18.00 |\n| 4 | 4 | 2023-04-05 | 1 | 20.00 |\n| 5 | 1 | 2023-05-20 | 2 | 10.00 |\n| 6 | 2 | 2023-06-12 | 4 | 15.00 |\n| 7 | 5 | 2023-06-15 | 5 | 12.00 |\n| 8 | 3 | 2023-07-24 | 2 | 18.00 |\n| 9 | 4 | 2023-08-01 | 5 | 20.00 |\n| 10 | 5 | 2023-09-03 | 3 | 12.00 |\n| 11 | 1 | 2023-09-25 | 6 | 10.00 |\n| 12 | 2 | 2023-11-10 | 4 | 15.00 |\n| 13 | 3 | 2023-12-05 | 6 | 18.00 |\n| 14 | 4 | 2023-12-22 | 3 | 20.00 |\n| 15 | 5 | 2024-02-14 | 2 | 12.00 |\n+---------+------------+------------+----------+-------+\n</pre>\n\n<p>products table:</p>\n\n<pre class=\"example-io\">\n+------------+-----------------+----------+\n| product_id | product_name | category |\n+------------+-----------------+----------+\n| 1 | Warm Jacket | Apparel |\n| 2 | Designer Jeans | Apparel |\n| 3 | Cutting Board | Kitchen |\n| 4 | Smart Speaker | Tech |\n| 5 | Yoga Mat | Fitness |\n+------------+-----------------+----------+\n</pre>\n\n<p><strong>Output:</strong></p>\n\n<pre class=\"example-io\">\n+---------+----------+----------------+---------------+\n| season | category | total_quantity | total_revenue |\n+---------+----------+----------------+---------------+\n| Fall | Apparel | 10 | 120.00 |\n| Spring | Kitchen | 3 | 54.00 |\n| Summer | Tech | 5 | 100.00 |\n| Winter | Apparel | 9 | 110.00 |\n+---------+----------+----------------+---------------+\n</pre>\n\n<p><strong>Explanation:</strong></p>\n\n<ul>\n\t<li><strong>Fall (Sep, Oct, Nov):</strong>\n\n\t<ul>\n\t\t<li>Apparel: 10 items sold (6 Jackets in Sep, 4 Jeans in Nov), revenue $120.00 (6&times;$10.00 + 4&times;$15.00)</li>\n\t\t<li>Fitness: 3 Yoga Mats sold in Sep, revenue $36.00</li>\n\t\t<li>Most popular: Apparel with highest total quantity (10)</li>\n\t</ul>\n\t</li>\n\t<li><strong>Spring (Mar, Apr, May):</strong>\n\t<ul>\n\t\t<li>Kitchen: 3 Cutting Boards sold in Mar, revenue $54.00</li>\n\t\t<li>Tech: 1 Smart Speaker sold in Apr, revenue $20.00</li>\n\t\t<li>Apparel: 2 Warm Jackets sold in May, revenue $20.00</li>\n\t\t<li>Most popular: Kitchen with highest total quantity (3) and highest revenue ($54.00)</li>\n\t</ul>\n\t</li>\n\t<li><strong>Summer (Jun, Jul, Aug):</strong>\n\t<ul>\n\t\t<li>Apparel: 4 Designer Jeans sold in Jun, revenue $60.00</li>\n\t\t<li>Fitness: 5 Yoga Mats sold in Jun, revenue $60.00</li>\n\t\t<li>Kitchen: 2 Cutting Boards sold in Jul, revenue $36.00</li>\n\t\t<li>Tech: 5 Smart Speakers sold in Aug, revenue $100.00</li>\n\t\t<li>Most popular: Tech and Fitness both have 5 items, but Tech has higher revenue ($100.00 vs $60.00)</li>\n\t</ul>\n\t</li>\n\t<li><strong>Winter (Dec, Jan, Feb):</strong>\n\t<ul>\n\t\t<li>Apparel: 9 items sold (5 Jackets in Jan, 4 Jeans in Jan), revenue $110.00</li>\n\t\t<li>Kitchen: 6 Cutting Boards sold in Dec, revenue $108.00</li>\n\t\t<li>Tech: 3 Smart Speakers sold in Dec, revenue $60.00</li>\n\t\t<li>Fitness: 2 Yoga Mats sold in Feb, revenue $24.00</li>\n\t\t<li>Most popular: Apparel with highest total quantity (9) and highest revenue ($110.00)</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p>The result table is ordered by season in ascending order.</p>\n</div>\n",
"translatedTitle": "季节性销售分析",
"translatedContent": "<p>表:<code>sales</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| sale_id | int |\n| product_id | int |\n| sale_date | date |\n| quantity | int |\n| price | decimal |\n+---------------+---------+\nsale_id 是这张表的唯一主键。\n每一行包含一件产品的销售信息包括 product_id销售日期销售数量以及单价。\n</pre>\n\n<p>表:<code>products</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| product_name | varchar |\n| category | varchar |\n+---------------+---------+\nproduct_id 是这张表的唯一主键。\n每一行包含一件产品的信息包括它的名字和分类。\n</pre>\n\n<p>编写一个解决方案来找到每个季节最受欢迎的产品分类。季节定义如下:</p>\n\n<ul>\n\t<li><strong>冬季</strong>:十二月,一月,二月</li>\n\t<li><strong>春季</strong>:三月,四月,五月</li>\n\t<li><strong>夏季</strong>:六月,七月,八月</li>\n\t<li><strong>秋季</strong>:九月,十月,十一月</li>\n</ul>\n\n<p>一个 <strong>分类</strong>&nbsp;的 <b>受欢迎度</b>&nbsp;由某个 <strong>季节</strong>&nbsp;的 <strong>总销售量</strong>&nbsp;决定。如果有并列,选择总收入最高的类别 (<code>quantity × price</code>)。</p>\n\n<p>返回结果表以季节 <strong>升序</strong>&nbsp;排序。</p>\n\n<p>结果格式如下所示。</p>\n\n<p>&nbsp;</p>\n\n<p><strong class=\"example\">示例:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>输入:</strong></p>\n\n<p>sales 表:</p>\n\n<pre class=\"example-io\">\n+---------+------------+------------+----------+-------+\n| sale_id | product_id | sale_date | quantity | price |\n+---------+------------+------------+----------+-------+\n| 1 | 1 | 2023-01-15 | 5 | 10.00 |\n| 2 | 2 | 2023-01-20 | 4 | 15.00 |\n| 3 | 3 | 2023-03-10 | 3 | 18.00 |\n| 4 | 4 | 2023-04-05 | 1 | 20.00 |\n| 5 | 1 | 2023-05-20 | 2 | 10.00 |\n| 6 | 2 | 2023-06-12 | 4 | 15.00 |\n| 7 | 5 | 2023-06-15 | 5 | 12.00 |\n| 8 | 3 | 2023-07-24 | 2 | 18.00 |\n| 9 | 4 | 2023-08-01 | 5 | 20.00 |\n| 10 | 5 | 2023-09-03 | 3 | 12.00 |\n| 11 | 1 | 2023-09-25 | 6 | 10.00 |\n| 12 | 2 | 2023-11-10 | 4 | 15.00 |\n| 13 | 3 | 2023-12-05 | 6 | 18.00 |\n| 14 | 4 | 2023-12-22 | 3 | 20.00 |\n| 15 | 5 | 2024-02-14 | 2 | 12.00 |\n+---------+------------+------------+----------+-------+\n</pre>\n\n<p>products 表:</p>\n\n<pre class=\"example-io\">\n+------------+-----------------+----------+\n| product_id | product_name | category |\n+------------+-----------------+----------+\n| 1 | Warm Jacket | Apparel |\n| 2 | Designer Jeans | Apparel |\n| 3 | Cutting Board | Kitchen |\n| 4 | Smart Speaker | Tech |\n| 5 | Yoga Mat | Fitness |\n+------------+-----------------+----------+\n</pre>\n\n<p><strong>输出:</strong></p>\n\n<pre class=\"example-io\">\n+---------+----------+----------------+---------------+\n| season | category | total_quantity | total_revenue |\n+---------+----------+----------------+---------------+\n| Fall | Apparel | 10 | 120.00 |\n| Spring | Kitchen | 3 | 54.00 |\n| Summer | Tech | 5 | 100.00 |\n| Winter | Apparel | 9 | 110.00 |\n+---------+----------+----------------+---------------+\n</pre>\n\n<p><strong>解释:</strong></p>\n\n<ul>\n\t<li><strong>秋季(九月,十月,十一月):</strong>\n\n\t<ul>\n\t\t<li>服装:售出 10 件商品(在 9 月有 6 件夹克,在 11 月 有 4 条牛仔裤),收入 $120.006×$10.00 + 4×$15.00</li>\n\t\t<li>健身: 9 月售出&nbsp;3 张瑜伽垫,收入&nbsp;$36.00</li>\n\t\t<li>最受欢迎服装总数量最多10</li>\n\t</ul>\n\t</li>\n\t<li><strong>春季(三月,四月,五月):</strong>\n\t<ul>\n\t\t<li>厨房5 月 售出 3 张菜板,收入 $54.00</li>\n\t\t<li>科技4 月 售出 1 台智能音箱,收入&nbsp;$20.00</li>\n\t\t<li>服装: 五月售出 2 件保暖夹克,收入&nbsp;$20.00</li>\n\t\t<li>最受欢迎厨房总数量最多3且收入最多$54.00</li>\n\t</ul>\n\t</li>\n\t<li><strong>夏季(六月,七月,八月</strong><strong></strong>\n\t<ul>\n\t\t<li>服装:六月售出 4 件名牌牛仔裤,收入 $60.00</li>\n\t\t<li>健身:六月售出 5&nbsp;张瑜伽垫,收入&nbsp;$60.00</li>\n\t\t<li>厨房:七月售出 2&nbsp;张菜板,收入 $36.00</li>\n\t\t<li>科技:八月售出 5&nbsp;台智能音箱,收入&nbsp;$100.00</li>\n\t\t<li>最受欢迎:科技和健身都有 5 件商品,但科技收入更多($100.00 vs $60.00</li>\n\t</ul>\n\t</li>\n\t<li><strong>冬季(十二月,一月,二月</strong><strong></strong>\n\t<ul>\n\t\t<li>服装:售出 9 件商品(一月有 5 件夹克和&nbsp;4 条牛仔裤),收入 $110.00</li>\n\t\t<li>厨房:十二月售出 6 张菜板,收入 $108.00</li>\n\t\t<li>科技:十二月售出 3 台智能音箱,收入 $60.00</li>\n\t\t<li>健身:二月售出 2 张瑜伽垫,收入 $24.00</li>\n\t\t<li>最受欢迎服装总数量最多9且收入最多$110.00</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p>结果表以季节升序排序。</p>\n</div>\n",
"isPaidOnly": false,
"difficulty": "Medium",
"likes": 0,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false, \"cangjie\": false}",
"topicTags": [
{
"name": "Database",
"slug": "database",
"translatedName": "数据库",
"__typename": "TopicTagNode"
}
],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "MySQL",
"langSlug": "mysql",
"code": "# Write your MySQL query statement below",
"__typename": "CodeSnippetNode"
},
{
"lang": "MS SQL Server",
"langSlug": "mssql",
"code": "/* Write your T-SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Oracle",
"langSlug": "oraclesql",
"code": "/* Write your PL/SQL query statement below */",
"__typename": "CodeSnippetNode"
},
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef seasonal_sales_analysis(products: pd.DataFrame, sales: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
},
{
"lang": "PostgreSQL",
"langSlug": "postgresql",
"code": "-- Write your PostgreSQL query statement below",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"379\", \"totalSubmission\": \"566\", \"totalAcceptedRaw\": 379, \"totalSubmissionRaw\": 566, \"acRate\": \"67.0%\"}",
"hints": [],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"sales\":[\"sale_id\",\"product_id\",\"sale_date\",\"quantity\",\"price\"],\"products\":[\"product_id\",\"product_name\",\"category\"]},\"rows\":{\"sales\":[[1,1,\"2023-01-15\",5,10.00],[2,2,\"2023-01-20\",4,15.00],[3,3,\"2023-03-10\",3,18.00],[4,4,\"2023-04-05\",1,20.00],[5,1,\"2023-05-20\",2,10.00],[6,2,\"2023-06-12\",4,15.00],[7,5,\"2023-06-15\",5,12.00],[8,3,\"2023-07-24\",2,18.00],[9,4,\"2023-08-01\",5,20.00],[10,5,\"2023-09-03\",3,12.00],[11,1,\"2023-09-25\",6,10.00],[12,2,\"2023-11-10\",4,15.00],[13,3,\"2023-12-05\",6,18.00],[14,4,\"2023-12-22\",3,20.00],[15,5,\"2024-02-14\",2,12.00]],\"products\":[[1,\"Warm Jacket\",\"Apparel\"],[2,\"Designer Jeans\",\"Apparel\"],[3,\"Cutting Board\",\"Kitchen\"],[4,\"Smart Speaker\",\"Tech\"],[5,\"Yoga Mat\",\"Fitness\"]]}}",
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists products (\\n product_id INT,\\n product_name VARCHAR(255),\\n category VARCHAR(50)\\n)\",\"CREATE TABLE if not exists sales (\\n sale_id INT,\\n product_id INT,\\n sale_date DATE,\\n quantity INT,\\n price DECIMAL(10, 2)\\n)\"],\"mssql\":[\"CREATE TABLE products (\\n product_id INT,\\n product_name VARCHAR(255),\\n category VARCHAR(50)\\n)\",\"\\nCREATE TABLE sales (\\n sale_id INT,\\n product_id INT,\\n sale_date DATE,\\n quantity INT,\\n price DECIMAL(10, 2)\\n)\"],\"oraclesql\":[\"CREATE TABLE products (\\n product_id NUMBER,\\n product_name VARCHAR2(255),\\n category VARCHAR2(50)\\n)\",\"CREATE TABLE sales (\\n sale_id NUMBER,\\n product_id NUMBER,\\n sale_date DATE,\\n quantity NUMBER,\\n price NUMBER(10, 2)\\n)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"seasonal_sales_analysis\",\"postgresql\":[\"CREATE TABLE products (\\n product_id INTEGER,\\n product_name VARCHAR(255),\\n category VARCHAR(50)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS sales (\\n sale_id INT,\\n product_id INT,\\n sale_date DATE,\\n quantity INT,\\n price DECIMAL(10, 2)\\n);\\n\"],\"pythondata\":[\"products = pd.DataFrame(columns=['product_id', 'product_name', 'category']).astype({'product_id': 'int64', 'product_name': 'string', 'category': 'string'})\\n\",\"sales = pd.DataFrame(columns=['sale_id', 'product_id', 'sale_date', 'quantity', 'price']).astype({'sale_id': 'int64', 'product_id': 'int64', 'sale_date': 'datetime64[ns]', 'quantity': 'int64', 'price': 'float64'})\\n\"],\"database_schema\":{\"products\":{\"product_id\":\"INT\",\"product_name\":\"VARCHAR(255)\",\"category\":\"VARCHAR(50)\"},\"sales\":{\"sale_id\":\"INT\",\"product_id\":\"INT\",\"sale_date\":\"DATE\",\"quantity\":\"INT\",\"price\":\"DECIMAL(10, 2)\"}}}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [
"CREATE TABLE if not exists products (\n product_id INT,\n product_name VARCHAR(255),\n category VARCHAR(50)\n)",
"CREATE TABLE if not exists sales (\n sale_id INT,\n product_id INT,\n sale_date DATE,\n quantity INT,\n price DECIMAL(10, 2)\n)",
"Truncate table sales",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('1', '1', '2023-01-15', '5', '10.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('2', '2', '2023-01-20', '4', '15.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('3', '3', '2023-03-10', '3', '18.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('4', '4', '2023-04-05', '1', '20.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('5', '1', '2023-05-20', '2', '10.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('6', '2', '2023-06-12', '4', '15.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('7', '5', '2023-06-15', '5', '12.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('8', '3', '2023-07-24', '2', '18.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('9', '4', '2023-08-01', '5', '20.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('10', '5', '2023-09-03', '3', '12.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('11', '1', '2023-09-25', '6', '10.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('12', '2', '2023-11-10', '4', '15.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('13', '3', '2023-12-05', '6', '18.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('14', '4', '2023-12-22', '3', '20.0')",
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('15', '5', '2024-02-14', '2', '12.0')",
"Truncate table products",
"insert into products (product_id, product_name, category) values ('1', 'Warm Jacket', 'Apparel')",
"insert into products (product_id, product_name, category) values ('2', 'Designer Jeans', 'Apparel')",
"insert into products (product_id, product_name, category) values ('3', 'Cutting Board', 'Kitchen')",
"insert into products (product_id, product_name, category) values ('4', 'Smart Speaker', 'Tech')",
"insert into products (product_id, product_name, category) values ('5', 'Yoga Mat', 'Fitness')"
],
"enableRunCode": true,
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.2.2 and NumPy 1.26.4<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"sales\":[\"sale_id\",\"product_id\",\"sale_date\",\"quantity\",\"price\"],\"products\":[\"product_id\",\"product_name\",\"category\"]},\"rows\":{\"sales\":[[1,1,\"2023-01-15\",5,10.00],[2,2,\"2023-01-20\",4,15.00],[3,3,\"2023-03-10\",3,18.00],[4,4,\"2023-04-05\",1,20.00],[5,1,\"2023-05-20\",2,10.00],[6,2,\"2023-06-12\",4,15.00],[7,5,\"2023-06-15\",5,12.00],[8,3,\"2023-07-24\",2,18.00],[9,4,\"2023-08-01\",5,20.00],[10,5,\"2023-09-03\",3,12.00],[11,1,\"2023-09-25\",6,10.00],[12,2,\"2023-11-10\",4,15.00],[13,3,\"2023-12-05\",6,18.00],[14,4,\"2023-12-22\",3,20.00],[15,5,\"2024-02-14\",2,12.00]],\"products\":[[1,\"Warm Jacket\",\"Apparel\"],[2,\"Designer Jeans\",\"Apparel\"],[3,\"Cutting Board\",\"Kitchen\"],[4,\"Smart Speaker\",\"Tech\"],[5,\"Yoga Mat\",\"Fitness\"]]}}",
"__typename": "QuestionNode"
}
}
}