mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-09-05 15:31:43 +08:00
109 lines
22 KiB
JSON
109 lines
22 KiB
JSON
{
|
||
"data": {
|
||
"question": {
|
||
"questionId": "3898",
|
||
"questionFrontendId": "3564",
|
||
"categoryTitle": "Database",
|
||
"boundTopicId": 3686016,
|
||
"title": "Seasonal Sales Analysis",
|
||
"titleSlug": "seasonal-sales-analysis",
|
||
"content": "<p>Table: <code>sales</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| sale_id | int |\n| product_id | int |\n| sale_date | date |\n| quantity | int |\n| price | decimal |\n+---------------+---------+\nsale_id is the unique identifier for this table.\nEach row contains information about a product sale including the product_id, date of sale, quantity sold, and price per unit.\n</pre>\n\n<p>Table: <code>products</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| product_name | varchar |\n| category | varchar |\n+---------------+---------+\nproduct_id is the unique identifier for this table.\nEach row contains information about a product including its name and category.\n</pre>\n\n<p>Write a solution to find the most popular product category for each season. The seasons are defined as:</p>\n\n<ul>\n\t<li><strong>Winter</strong>: December, January, February</li>\n\t<li><strong>Spring</strong>: March, April, May</li>\n\t<li><strong>Summer</strong>: June, July, August</li>\n\t<li><strong>Fall</strong>: September, October, November</li>\n</ul>\n\n<p>The <strong>popularity</strong> of a <strong>category</strong> is determined by the <strong>total quantity sold</strong> in that <strong>season</strong>. If there is a <strong>tie</strong>, select the category with the highest <strong>total revenue</strong> (<code>quantity × price</code>).</p>\n\n<p>Return <em>the result table ordered by season in <strong>ascending</strong> order</em>.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>Input:</strong></p>\n\n<p>sales table:</p>\n\n<pre class=\"example-io\">\n+---------+------------+------------+----------+-------+\n| sale_id | product_id | sale_date | quantity | price |\n+---------+------------+------------+----------+-------+\n| 1 | 1 | 2023-01-15 | 5 | 10.00 |\n| 2 | 2 | 2023-01-20 | 4 | 15.00 |\n| 3 | 3 | 2023-03-10 | 3 | 18.00 |\n| 4 | 4 | 2023-04-05 | 1 | 20.00 |\n| 5 | 1 | 2023-05-20 | 2 | 10.00 |\n| 6 | 2 | 2023-06-12 | 4 | 15.00 |\n| 7 | 5 | 2023-06-15 | 5 | 12.00 |\n| 8 | 3 | 2023-07-24 | 2 | 18.00 |\n| 9 | 4 | 2023-08-01 | 5 | 20.00 |\n| 10 | 5 | 2023-09-03 | 3 | 12.00 |\n| 11 | 1 | 2023-09-25 | 6 | 10.00 |\n| 12 | 2 | 2023-11-10 | 4 | 15.00 |\n| 13 | 3 | 2023-12-05 | 6 | 18.00 |\n| 14 | 4 | 2023-12-22 | 3 | 20.00 |\n| 15 | 5 | 2024-02-14 | 2 | 12.00 |\n+---------+------------+------------+----------+-------+\n</pre>\n\n<p>products table:</p>\n\n<pre class=\"example-io\">\n+------------+-----------------+----------+\n| product_id | product_name | category |\n+------------+-----------------+----------+\n| 1 | Warm Jacket | Apparel |\n| 2 | Designer Jeans | Apparel |\n| 3 | Cutting Board | Kitchen |\n| 4 | Smart Speaker | Tech |\n| 5 | Yoga Mat | Fitness |\n+------------+-----------------+----------+\n</pre>\n\n<p><strong>Output:</strong></p>\n\n<pre class=\"example-io\">\n+---------+----------+----------------+---------------+\n| season | category | total_quantity | total_revenue |\n+---------+----------+----------------+---------------+\n| Fall | Apparel | 10 | 120.00 |\n| Spring | Kitchen | 3 | 54.00 |\n| Summer | Tech | 5 | 100.00 |\n| Winter | Apparel | 9 | 110.00 |\n+---------+----------+----------------+---------------+\n</pre>\n\n<p><strong>Explanation:</strong></p>\n\n<ul>\n\t<li><strong>Fall (Sep, Oct, Nov):</strong>\n\n\t<ul>\n\t\t<li>Apparel: 10 items sold (6 Jackets in Sep, 4 Jeans in Nov), revenue $120.00 (6×$10.00 + 4×$15.00)</li>\n\t\t<li>Fitness: 3 Yoga Mats sold in Sep, revenue $36.00</li>\n\t\t<li>Most popular: Apparel with highest total quantity (10)</li>\n\t</ul>\n\t</li>\n\t<li><strong>Spring (Mar, Apr, May):</strong>\n\t<ul>\n\t\t<li>Kitchen: 3 Cutting Boards sold in Mar, revenue $54.00</li>\n\t\t<li>Tech: 1 Smart Speaker sold in Apr, revenue $20.00</li>\n\t\t<li>Apparel: 2 Warm Jackets sold in May, revenue $20.00</li>\n\t\t<li>Most popular: Kitchen with highest total quantity (3) and highest revenue ($54.00)</li>\n\t</ul>\n\t</li>\n\t<li><strong>Summer (Jun, Jul, Aug):</strong>\n\t<ul>\n\t\t<li>Apparel: 4 Designer Jeans sold in Jun, revenue $60.00</li>\n\t\t<li>Fitness: 5 Yoga Mats sold in Jun, revenue $60.00</li>\n\t\t<li>Kitchen: 2 Cutting Boards sold in Jul, revenue $36.00</li>\n\t\t<li>Tech: 5 Smart Speakers sold in Aug, revenue $100.00</li>\n\t\t<li>Most popular: Tech and Fitness both have 5 items, but Tech has higher revenue ($100.00 vs $60.00)</li>\n\t</ul>\n\t</li>\n\t<li><strong>Winter (Dec, Jan, Feb):</strong>\n\t<ul>\n\t\t<li>Apparel: 9 items sold (5 Jackets in Jan, 4 Jeans in Jan), revenue $110.00</li>\n\t\t<li>Kitchen: 6 Cutting Boards sold in Dec, revenue $108.00</li>\n\t\t<li>Tech: 3 Smart Speakers sold in Dec, revenue $60.00</li>\n\t\t<li>Fitness: 2 Yoga Mats sold in Feb, revenue $24.00</li>\n\t\t<li>Most popular: Apparel with highest total quantity (9) and highest revenue ($110.00)</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p>The result table is ordered by season in ascending order.</p>\n</div>\n",
|
||
"translatedTitle": "季节性销售分析",
|
||
"translatedContent": "<p>表:<code>sales</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| sale_id | int |\n| product_id | int |\n| sale_date | date |\n| quantity | int |\n| price | decimal |\n+---------------+---------+\nsale_id 是这张表的唯一主键。\n每一行包含一件产品的销售信息,包括 product_id,销售日期,销售数量,以及单价。\n</pre>\n\n<p>表:<code>products</code></p>\n\n<pre>\n+---------------+---------+\n| Column Name | Type |\n+---------------+---------+\n| product_id | int |\n| product_name | varchar |\n| category | varchar |\n+---------------+---------+\nproduct_id 是这张表的唯一主键。\n每一行包含一件产品的信息,包括它的名字和分类。\n</pre>\n\n<p>编写一个解决方案来找到每个季节最受欢迎的产品分类。季节定义如下:</p>\n\n<ul>\n\t<li><strong>冬季</strong>:十二月,一月,二月</li>\n\t<li><strong>春季</strong>:三月,四月,五月</li>\n\t<li><strong>夏季</strong>:六月,七月,八月</li>\n\t<li><strong>秋季</strong>:九月,十月,十一月</li>\n</ul>\n\n<p>一个 <strong>分类</strong> 的 <b>受欢迎度</b> 由某个 <strong>季节</strong> 的 <strong>总销售量</strong> 决定。如果有并列,选择总收入最高的类别 (<code>quantity × price</code>)。</p>\n\n<p>返回结果表以季节 <strong>升序</strong> 排序。</p>\n\n<p>结果格式如下所示。</p>\n\n<p> </p>\n\n<p><strong class=\"example\">示例:</strong></p>\n\n<div class=\"example-block\">\n<p><strong>输入:</strong></p>\n\n<p>sales 表:</p>\n\n<pre class=\"example-io\">\n+---------+------------+------------+----------+-------+\n| sale_id | product_id | sale_date | quantity | price |\n+---------+------------+------------+----------+-------+\n| 1 | 1 | 2023-01-15 | 5 | 10.00 |\n| 2 | 2 | 2023-01-20 | 4 | 15.00 |\n| 3 | 3 | 2023-03-10 | 3 | 18.00 |\n| 4 | 4 | 2023-04-05 | 1 | 20.00 |\n| 5 | 1 | 2023-05-20 | 2 | 10.00 |\n| 6 | 2 | 2023-06-12 | 4 | 15.00 |\n| 7 | 5 | 2023-06-15 | 5 | 12.00 |\n| 8 | 3 | 2023-07-24 | 2 | 18.00 |\n| 9 | 4 | 2023-08-01 | 5 | 20.00 |\n| 10 | 5 | 2023-09-03 | 3 | 12.00 |\n| 11 | 1 | 2023-09-25 | 6 | 10.00 |\n| 12 | 2 | 2023-11-10 | 4 | 15.00 |\n| 13 | 3 | 2023-12-05 | 6 | 18.00 |\n| 14 | 4 | 2023-12-22 | 3 | 20.00 |\n| 15 | 5 | 2024-02-14 | 2 | 12.00 |\n+---------+------------+------------+----------+-------+\n</pre>\n\n<p>products 表:</p>\n\n<pre class=\"example-io\">\n+------------+-----------------+----------+\n| product_id | product_name | category |\n+------------+-----------------+----------+\n| 1 | Warm Jacket | Apparel |\n| 2 | Designer Jeans | Apparel |\n| 3 | Cutting Board | Kitchen |\n| 4 | Smart Speaker | Tech |\n| 5 | Yoga Mat | Fitness |\n+------------+-----------------+----------+\n</pre>\n\n<p><strong>输出:</strong></p>\n\n<pre class=\"example-io\">\n+---------+----------+----------------+---------------+\n| season | category | total_quantity | total_revenue |\n+---------+----------+----------------+---------------+\n| Fall | Apparel | 10 | 120.00 |\n| Spring | Kitchen | 3 | 54.00 |\n| Summer | Tech | 5 | 100.00 |\n| Winter | Apparel | 9 | 110.00 |\n+---------+----------+----------------+---------------+\n</pre>\n\n<p><strong>解释:</strong></p>\n\n<ul>\n\t<li><strong>秋季(九月,十月,十一月):</strong>\n\n\t<ul>\n\t\t<li>服装:售出 10 件商品(在 9 月有 6 件夹克,在 11 月 有 4 条牛仔裤),收入 $120.00(6×$10.00 + 4×$15.00)</li>\n\t\t<li>健身: 9 月售出 3 张瑜伽垫,收入 $36.00</li>\n\t\t<li>最受欢迎:服装总数量最多(10)</li>\n\t</ul>\n\t</li>\n\t<li><strong>春季(三月,四月,五月):</strong>\n\t<ul>\n\t\t<li>厨房:5 月 售出 3 张菜板,收入 $54.00</li>\n\t\t<li>科技:4 月 售出 1 台智能音箱,收入 $20.00</li>\n\t\t<li>服装: 五月售出 2 件保暖夹克,收入 $20.00</li>\n\t\t<li>最受欢迎:厨房总数量最多(3)且收入最多($54.00)</li>\n\t</ul>\n\t</li>\n\t<li><strong>夏季(六月,七月,八月</strong><strong>):</strong>\n\t<ul>\n\t\t<li>服装:六月售出 4 件名牌牛仔裤,收入 $60.00</li>\n\t\t<li>健身:六月售出 5 张瑜伽垫,收入 $60.00</li>\n\t\t<li>厨房:七月售出 2 张菜板,收入 $36.00</li>\n\t\t<li>科技:八月售出 5 台智能音箱,收入 $100.00</li>\n\t\t<li>最受欢迎:科技和健身都有 5 件商品,但科技收入更多($100.00 vs $60.00)</li>\n\t</ul>\n\t</li>\n\t<li><strong>冬季(十二月,一月,二月</strong><strong>):</strong>\n\t<ul>\n\t\t<li>服装:售出 9 件商品(一月有 5 件夹克和 4 条牛仔裤),收入 $110.00</li>\n\t\t<li>厨房:十二月售出 6 张菜板,收入 $108.00</li>\n\t\t<li>科技:十二月售出 3 台智能音箱,收入 $60.00</li>\n\t\t<li>健身:二月售出 2 张瑜伽垫,收入 $24.00</li>\n\t\t<li>最受欢迎:服装总数量最多(9)且收入最多($110.00)</li>\n\t</ul>\n\t</li>\n</ul>\n\n<p>结果表以季节升序排序。</p>\n</div>\n",
|
||
"isPaidOnly": false,
|
||
"difficulty": "Medium",
|
||
"likes": 0,
|
||
"dislikes": 0,
|
||
"isLiked": null,
|
||
"similarQuestions": "[]",
|
||
"contributors": [],
|
||
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false, \"cangjie\": false}",
|
||
"topicTags": [
|
||
{
|
||
"name": "Database",
|
||
"slug": "database",
|
||
"translatedName": "数据库",
|
||
"__typename": "TopicTagNode"
|
||
}
|
||
],
|
||
"companyTagStats": null,
|
||
"codeSnippets": [
|
||
{
|
||
"lang": "MySQL",
|
||
"langSlug": "mysql",
|
||
"code": "# Write your MySQL query statement below",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "MS SQL Server",
|
||
"langSlug": "mssql",
|
||
"code": "/* Write your T-SQL query statement below */",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Oracle",
|
||
"langSlug": "oraclesql",
|
||
"code": "/* Write your PL/SQL query statement below */",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "Pandas",
|
||
"langSlug": "pythondata",
|
||
"code": "import pandas as pd\n\ndef seasonal_sales_analysis(products: pd.DataFrame, sales: pd.DataFrame) -> pd.DataFrame:\n ",
|
||
"__typename": "CodeSnippetNode"
|
||
},
|
||
{
|
||
"lang": "PostgreSQL",
|
||
"langSlug": "postgresql",
|
||
"code": "-- Write your PostgreSQL query statement below",
|
||
"__typename": "CodeSnippetNode"
|
||
}
|
||
],
|
||
"stats": "{\"totalAccepted\": \"379\", \"totalSubmission\": \"566\", \"totalAcceptedRaw\": 379, \"totalSubmissionRaw\": 566, \"acRate\": \"67.0%\"}",
|
||
"hints": [],
|
||
"solution": null,
|
||
"status": null,
|
||
"sampleTestCase": "{\"headers\":{\"sales\":[\"sale_id\",\"product_id\",\"sale_date\",\"quantity\",\"price\"],\"products\":[\"product_id\",\"product_name\",\"category\"]},\"rows\":{\"sales\":[[1,1,\"2023-01-15\",5,10.00],[2,2,\"2023-01-20\",4,15.00],[3,3,\"2023-03-10\",3,18.00],[4,4,\"2023-04-05\",1,20.00],[5,1,\"2023-05-20\",2,10.00],[6,2,\"2023-06-12\",4,15.00],[7,5,\"2023-06-15\",5,12.00],[8,3,\"2023-07-24\",2,18.00],[9,4,\"2023-08-01\",5,20.00],[10,5,\"2023-09-03\",3,12.00],[11,1,\"2023-09-25\",6,10.00],[12,2,\"2023-11-10\",4,15.00],[13,3,\"2023-12-05\",6,18.00],[14,4,\"2023-12-22\",3,20.00],[15,5,\"2024-02-14\",2,12.00]],\"products\":[[1,\"Warm Jacket\",\"Apparel\"],[2,\"Designer Jeans\",\"Apparel\"],[3,\"Cutting Board\",\"Kitchen\"],[4,\"Smart Speaker\",\"Tech\"],[5,\"Yoga Mat\",\"Fitness\"]]}}",
|
||
"metaData": "{\"mysql\":[\"CREATE TABLE if not exists products (\\n product_id INT,\\n product_name VARCHAR(255),\\n category VARCHAR(50)\\n)\",\"CREATE TABLE if not exists sales (\\n sale_id INT,\\n product_id INT,\\n sale_date DATE,\\n quantity INT,\\n price DECIMAL(10, 2)\\n)\"],\"mssql\":[\"CREATE TABLE products (\\n product_id INT,\\n product_name VARCHAR(255),\\n category VARCHAR(50)\\n)\",\"\\nCREATE TABLE sales (\\n sale_id INT,\\n product_id INT,\\n sale_date DATE,\\n quantity INT,\\n price DECIMAL(10, 2)\\n)\"],\"oraclesql\":[\"CREATE TABLE products (\\n product_id NUMBER,\\n product_name VARCHAR2(255),\\n category VARCHAR2(50)\\n)\",\"CREATE TABLE sales (\\n sale_id NUMBER,\\n product_id NUMBER,\\n sale_date DATE,\\n quantity NUMBER,\\n price NUMBER(10, 2)\\n)\",\"ALTER SESSION SET nls_date_format='YYYY-MM-DD'\"],\"database\":true,\"name\":\"seasonal_sales_analysis\",\"postgresql\":[\"CREATE TABLE products (\\n product_id INTEGER,\\n product_name VARCHAR(255),\\n category VARCHAR(50)\\n);\\n\",\"CREATE TABLE IF NOT EXISTS sales (\\n sale_id INT,\\n product_id INT,\\n sale_date DATE,\\n quantity INT,\\n price DECIMAL(10, 2)\\n);\\n\"],\"pythondata\":[\"products = pd.DataFrame(columns=['product_id', 'product_name', 'category']).astype({'product_id': 'int64', 'product_name': 'string', 'category': 'string'})\\n\",\"sales = pd.DataFrame(columns=['sale_id', 'product_id', 'sale_date', 'quantity', 'price']).astype({'sale_id': 'int64', 'product_id': 'int64', 'sale_date': 'datetime64[ns]', 'quantity': 'int64', 'price': 'float64'})\\n\"],\"database_schema\":{\"products\":{\"product_id\":\"INT\",\"product_name\":\"VARCHAR(255)\",\"category\":\"VARCHAR(50)\"},\"sales\":{\"sale_id\":\"INT\",\"product_id\":\"INT\",\"sale_date\":\"DATE\",\"quantity\":\"INT\",\"price\":\"DECIMAL(10, 2)\"}}}",
|
||
"judgerAvailable": true,
|
||
"judgeType": "large",
|
||
"mysqlSchemas": [
|
||
"CREATE TABLE if not exists products (\n product_id INT,\n product_name VARCHAR(255),\n category VARCHAR(50)\n)",
|
||
"CREATE TABLE if not exists sales (\n sale_id INT,\n product_id INT,\n sale_date DATE,\n quantity INT,\n price DECIMAL(10, 2)\n)",
|
||
"Truncate table sales",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('1', '1', '2023-01-15', '5', '10.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('2', '2', '2023-01-20', '4', '15.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('3', '3', '2023-03-10', '3', '18.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('4', '4', '2023-04-05', '1', '20.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('5', '1', '2023-05-20', '2', '10.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('6', '2', '2023-06-12', '4', '15.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('7', '5', '2023-06-15', '5', '12.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('8', '3', '2023-07-24', '2', '18.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('9', '4', '2023-08-01', '5', '20.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('10', '5', '2023-09-03', '3', '12.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('11', '1', '2023-09-25', '6', '10.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('12', '2', '2023-11-10', '4', '15.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('13', '3', '2023-12-05', '6', '18.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('14', '4', '2023-12-22', '3', '20.0')",
|
||
"insert into sales (sale_id, product_id, sale_date, quantity, price) values ('15', '5', '2024-02-14', '2', '12.0')",
|
||
"Truncate table products",
|
||
"insert into products (product_id, product_name, category) values ('1', 'Warm Jacket', 'Apparel')",
|
||
"insert into products (product_id, product_name, category) values ('2', 'Designer Jeans', 'Apparel')",
|
||
"insert into products (product_id, product_name, category) values ('3', 'Cutting Board', 'Kitchen')",
|
||
"insert into products (product_id, product_name, category) values ('4', 'Smart Speaker', 'Tech')",
|
||
"insert into products (product_id, product_name, category) values ('5', 'Yoga Mat', 'Fitness')"
|
||
],
|
||
"enableRunCode": true,
|
||
"envInfo": "{\"mysql\":[\"MySQL\",\"<p>\\u7248\\u672c\\uff1a<code>MySQL 8.0<\\/code><\\/p>\"],\"mssql\":[\"MS SQL Server\",\"<p>mssql server 2019.<\\/p>\"],\"oraclesql\":[\"Oracle\",\"<p>Oracle Sql 11.2.<\\/p>\"],\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.2.2 and NumPy 1.26.4<\\/p>\"],\"postgresql\":[\"PostgreSQL\",\"<p>PostgreSQL 16<\\/p>\"]}",
|
||
"book": null,
|
||
"isSubscribed": false,
|
||
"isDailyQuestion": false,
|
||
"dailyRecordStatus": null,
|
||
"editorType": "CKEDITOR",
|
||
"ugcQuestionId": null,
|
||
"style": "LEETCODE",
|
||
"exampleTestcases": "{\"headers\":{\"sales\":[\"sale_id\",\"product_id\",\"sale_date\",\"quantity\",\"price\"],\"products\":[\"product_id\",\"product_name\",\"category\"]},\"rows\":{\"sales\":[[1,1,\"2023-01-15\",5,10.00],[2,2,\"2023-01-20\",4,15.00],[3,3,\"2023-03-10\",3,18.00],[4,4,\"2023-04-05\",1,20.00],[5,1,\"2023-05-20\",2,10.00],[6,2,\"2023-06-12\",4,15.00],[7,5,\"2023-06-15\",5,12.00],[8,3,\"2023-07-24\",2,18.00],[9,4,\"2023-08-01\",5,20.00],[10,5,\"2023-09-03\",3,12.00],[11,1,\"2023-09-25\",6,10.00],[12,2,\"2023-11-10\",4,15.00],[13,3,\"2023-12-05\",6,18.00],[14,4,\"2023-12-22\",3,20.00],[15,5,\"2024-02-14\",2,12.00]],\"products\":[[1,\"Warm Jacket\",\"Apparel\"],[2,\"Designer Jeans\",\"Apparel\"],[3,\"Cutting Board\",\"Kitchen\"],[4,\"Smart Speaker\",\"Tech\"],[5,\"Yoga Mat\",\"Fitness\"]]}}",
|
||
"__typename": "QuestionNode"
|
||
}
|
||
}
|
||
} |