1
0
mirror of https://gitee.com/coder-xiaomo/leetcode-problemset synced 2025-01-25 17:50:26 +08:00
Code Issues Projects Releases Wiki Activity GitHub Gitee
leetcode-problemset/leetcode-cn/originData/reshape-data-melt.json
2023-12-09 19:57:46 +08:00

55 lines
6.4 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"data": {
"question": {
"questionId": "3073",
"questionFrontendId": "2890",
"categoryTitle": "pandas",
"boundTopicId": 2467495,
"title": "Reshape Data: Melt",
"titleSlug": "reshape-data-melt",
"content": "<pre>\nDataFrame <code>report</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| product | object |\n| quarter_1 | int |\n| quarter_2 | int |\n| quarter_3 | int |\n| quarter_4 | int |\n+-------------+--------+\n</pre>\n\n<p>Write a solution to <strong>reshape</strong> the data so that each row represents sales data for a product in a specific quarter.</p>\n\n<p>The result format is in the following example.</p>\n\n<p>&nbsp;</p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:\n</strong>+-------------+-----------+-----------+-----------+-----------+\n| product | quarter_1 | quarter_2 | quarter_3 | quarter_4 |\n+-------------+-----------+-----------+-----------+-----------+\n| Umbrella | 417 | 224 | 379 | 611 |\n| SleepingBag | 800 | 936 | 93 | 875 |\n+-------------+-----------+-----------+-----------+-----------+\n<strong>Output:</strong>\n+-------------+-----------+-------+\n| product | quarter | sales |\n+-------------+-----------+-------+\n| Umbrella | quarter_1 | 417 |\n| SleepingBag | quarter_1 | 800 |\n| Umbrella | quarter_2 | 224 |\n| SleepingBag | quarter_2 | 936 |\n| Umbrella | quarter_3 | 379 |\n| SleepingBag | quarter_3 | 93 |\n| Umbrella | quarter_4 | 611 |\n| SleepingBag | quarter_4 | 875 |\n+-------------+-----------+-------+\n<strong>Explanation:</strong>\nThe DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter.\n</pre>\n",
"translatedTitle": "重塑数据:融合",
"translatedContent": "<pre>\nDataFrame <code>report</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| product | object |\n| quarter_1 | int |\n| quarter_2 | int |\n| quarter_3 | int |\n| quarter_4 | int |\n+-------------+--------+\n</pre>\n\n<p>编写一个解决方案,将数据 <strong>重塑</strong> 成每一行表示特定季度产品销售数据的形式。</p>\n\n<p>结果格式如下例所示:</p>\n\n<p>&nbsp;</p>\n\n<p><strong class=\"example\">示例 1</strong></p>\n\n<pre>\n<strong>输入:\n</strong>+-------------+-----------+-----------+-----------+-----------+\n| product | quarter_1 | quarter_2 | quarter_3 | quarter_4 |\n+-------------+-----------+-----------+-----------+-----------+\n| Umbrella | 417 | 224 | 379 | 611 |\n| SleepingBag | 800 | 936 | 93 | 875 |\n+-------------+-----------+-----------+-----------+-----------+\n<strong>输出:</strong>\n+-------------+-----------+-------+\n| product | quarter | sales |\n+-------------+-----------+-------+\n| Umbrella | quarter_1 | 417 |\n| SleepingBag | quarter_1 | 800 |\n| Umbrella | quarter_2 | 224 |\n| SleepingBag | quarter_2 | 936 |\n| Umbrella | quarter_3 | 379 |\n| SleepingBag | quarter_3 | 93 |\n| Umbrella | quarter_4 | 611 |\n| SleepingBag | quarter_4 | 875 |\n+-------------+-----------+-------+\n<strong>解释:</strong>\nDataFrame 已从宽格式重塑为长格式。每一行表示一个季度内产品的销售情况。\n</pre>\n",
"isPaidOnly": false,
"difficulty": "Easy",
"likes": 1,
"dislikes": 0,
"isLiked": null,
"similarQuestions": "[]",
"contributors": [],
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
"topicTags": [],
"companyTagStats": null,
"codeSnippets": [
{
"lang": "Pandas",
"langSlug": "pythondata",
"code": "import pandas as pd\n\ndef meltTable(report: pd.DataFrame) -> pd.DataFrame:\n ",
"__typename": "CodeSnippetNode"
}
],
"stats": "{\"totalAccepted\": \"1.1K\", \"totalSubmission\": \"1.4K\", \"totalAcceptedRaw\": 1097, \"totalSubmissionRaw\": 1366, \"acRate\": \"80.3%\"}",
"hints": [
"Consider using a built-in function in pandas library to transform the data"
],
"solution": null,
"status": null,
"sampleTestCase": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}",
"metaData": "{\n \"pythondata\": [\n \"report = pd.DataFrame([], columns=['product', 'quarter_1', 'quarter_2', 'quarter_3', 'quarter_4']).astype({'product':'object', 'quarter_1':'Int64', 'quarter_2':'Int64', 'quarter_3':'Int64', 'quarter_4':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"meltTable\",\n \"languages\": [\n \"pythondata\"\n ]\n}",
"judgerAvailable": true,
"judgeType": "large",
"mysqlSchemas": [],
"enableRunCode": true,
"envInfo": "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}",
"book": null,
"isSubscribed": false,
"isDailyQuestion": false,
"dailyRecordStatus": null,
"editorType": "CKEDITOR",
"ugcQuestionId": null,
"style": "LEETCODE",
"exampleTestcases": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}",
"__typename": "QuestionNode"
}
}
}