mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-25 17:50:26 +08:00
55 lines
6.4 KiB
JSON
55 lines
6.4 KiB
JSON
{
|
||
"data": {
|
||
"question": {
|
||
"questionId": "3073",
|
||
"questionFrontendId": "2890",
|
||
"categoryTitle": "pandas",
|
||
"boundTopicId": 2467495,
|
||
"title": "Reshape Data: Melt",
|
||
"titleSlug": "reshape-data-melt",
|
||
"content": "<pre>\nDataFrame <code>report</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| product | object |\n| quarter_1 | int |\n| quarter_2 | int |\n| quarter_3 | int |\n| quarter_4 | int |\n+-------------+--------+\n</pre>\n\n<p>Write a solution to <strong>reshape</strong> the data so that each row represents sales data for a product in a specific quarter.</p>\n\n<p>The result format is in the following example.</p>\n\n<p> </p>\n<p><strong class=\"example\">Example 1:</strong></p>\n\n<pre>\n<strong>Input:\n</strong>+-------------+-----------+-----------+-----------+-----------+\n| product | quarter_1 | quarter_2 | quarter_3 | quarter_4 |\n+-------------+-----------+-----------+-----------+-----------+\n| Umbrella | 417 | 224 | 379 | 611 |\n| SleepingBag | 800 | 936 | 93 | 875 |\n+-------------+-----------+-----------+-----------+-----------+\n<strong>Output:</strong>\n+-------------+-----------+-------+\n| product | quarter | sales |\n+-------------+-----------+-------+\n| Umbrella | quarter_1 | 417 |\n| SleepingBag | quarter_1 | 800 |\n| Umbrella | quarter_2 | 224 |\n| SleepingBag | quarter_2 | 936 |\n| Umbrella | quarter_3 | 379 |\n| SleepingBag | quarter_3 | 93 |\n| Umbrella | quarter_4 | 611 |\n| SleepingBag | quarter_4 | 875 |\n+-------------+-----------+-------+\n<strong>Explanation:</strong>\nThe DataFrame is reshaped from wide to long format. Each row represents the sales of a product in a quarter.\n</pre>\n",
|
||
"translatedTitle": "重塑数据:融合",
|
||
"translatedContent": "<pre>\nDataFrame <code>report</code>\n+-------------+--------+\n| Column Name | Type |\n+-------------+--------+\n| product | object |\n| quarter_1 | int |\n| quarter_2 | int |\n| quarter_3 | int |\n| quarter_4 | int |\n+-------------+--------+\n</pre>\n\n<p>编写一个解决方案,将数据 <strong>重塑</strong> 成每一行表示特定季度产品销售数据的形式。</p>\n\n<p>结果格式如下例所示:</p>\n\n<p> </p>\n\n<p><strong class=\"example\">示例 1:</strong></p>\n\n<pre>\n<strong>输入:\n</strong>+-------------+-----------+-----------+-----------+-----------+\n| product | quarter_1 | quarter_2 | quarter_3 | quarter_4 |\n+-------------+-----------+-----------+-----------+-----------+\n| Umbrella | 417 | 224 | 379 | 611 |\n| SleepingBag | 800 | 936 | 93 | 875 |\n+-------------+-----------+-----------+-----------+-----------+\n<strong>输出:</strong>\n+-------------+-----------+-------+\n| product | quarter | sales |\n+-------------+-----------+-------+\n| Umbrella | quarter_1 | 417 |\n| SleepingBag | quarter_1 | 800 |\n| Umbrella | quarter_2 | 224 |\n| SleepingBag | quarter_2 | 936 |\n| Umbrella | quarter_3 | 379 |\n| SleepingBag | quarter_3 | 93 |\n| Umbrella | quarter_4 | 611 |\n| SleepingBag | quarter_4 | 875 |\n+-------------+-----------+-------+\n<strong>解释:</strong>\nDataFrame 已从宽格式重塑为长格式。每一行表示一个季度内产品的销售情况。\n</pre>\n",
|
||
"isPaidOnly": false,
|
||
"difficulty": "Easy",
|
||
"likes": 1,
|
||
"dislikes": 0,
|
||
"isLiked": null,
|
||
"similarQuestions": "[]",
|
||
"contributors": [],
|
||
"langToValidPlayground": "{\"cpp\": false, \"java\": false, \"python\": false, \"python3\": false, \"mysql\": false, \"mssql\": false, \"oraclesql\": false, \"c\": false, \"csharp\": false, \"javascript\": false, \"typescript\": false, \"bash\": false, \"php\": false, \"swift\": false, \"kotlin\": false, \"dart\": false, \"golang\": false, \"ruby\": false, \"scala\": false, \"html\": false, \"pythonml\": false, \"rust\": false, \"racket\": false, \"erlang\": false, \"elixir\": false, \"pythondata\": false, \"react\": false, \"vanillajs\": false, \"postgresql\": false}",
|
||
"topicTags": [],
|
||
"companyTagStats": null,
|
||
"codeSnippets": [
|
||
{
|
||
"lang": "Pandas",
|
||
"langSlug": "pythondata",
|
||
"code": "import pandas as pd\n\ndef meltTable(report: pd.DataFrame) -> pd.DataFrame:\n ",
|
||
"__typename": "CodeSnippetNode"
|
||
}
|
||
],
|
||
"stats": "{\"totalAccepted\": \"1.1K\", \"totalSubmission\": \"1.4K\", \"totalAcceptedRaw\": 1097, \"totalSubmissionRaw\": 1366, \"acRate\": \"80.3%\"}",
|
||
"hints": [
|
||
"Consider using a built-in function in pandas library to transform the data"
|
||
],
|
||
"solution": null,
|
||
"status": null,
|
||
"sampleTestCase": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}",
|
||
"metaData": "{\n \"pythondata\": [\n \"report = pd.DataFrame([], columns=['product', 'quarter_1', 'quarter_2', 'quarter_3', 'quarter_4']).astype({'product':'object', 'quarter_1':'Int64', 'quarter_2':'Int64', 'quarter_3':'Int64', 'quarter_4':'Int64'})\"\n ],\n \"database\": true,\n \"name\": \"meltTable\",\n \"languages\": [\n \"pythondata\"\n ]\n}",
|
||
"judgerAvailable": true,
|
||
"judgeType": "large",
|
||
"mysqlSchemas": [],
|
||
"enableRunCode": true,
|
||
"envInfo": "{\"pythondata\":[\"Pandas\",\"<p>Python 3.10 with Pandas 2.0.2 and NumPy 1.25.0<\\/p>\"]}",
|
||
"book": null,
|
||
"isSubscribed": false,
|
||
"isDailyQuestion": false,
|
||
"dailyRecordStatus": null,
|
||
"editorType": "CKEDITOR",
|
||
"ugcQuestionId": null,
|
||
"style": "LEETCODE",
|
||
"exampleTestcases": "{\"headers\":{\"report\":[\"product\",\"quarter_1\",\"quarter_2\",\"quarter_3\",\"quarter_4\"]},\"rows\":{\"report\":[[\"Umbrella\",417,224,379,611],[\"SleepingBag\",800,936,93,875]]}}",
|
||
"__typename": "QuestionNode"
|
||
}
|
||
}
|
||
} |