mirror of
https://gitee.com/coder-xiaomo/leetcode-problemset
synced 2025-01-10 18:48:13 +08:00
42 lines
2.4 KiB
HTML
42 lines
2.4 KiB
HTML
<p>You are given two positive <strong>0-indexed</strong> integer arrays <code>nums1</code> and <code>nums2</code>, both of length <code>n</code>.</p>
|
|
|
|
<p>The <strong>sum of squared difference</strong> of arrays <code>nums1</code> and <code>nums2</code> is defined as the <strong>sum</strong> of <code>(nums1[i] - nums2[i])<sup>2</sup></code> for each <code>0 <= i < n</code>.</p>
|
|
|
|
<p>You are also given two positive integers <code>k1</code> and <code>k2</code>. You can modify any of the elements of <code>nums1</code> by <code>+1</code> or <code>-1</code> at most <code>k1</code> times. Similarly, you can modify any of the elements of <code>nums2</code> by <code>+1</code> or <code>-1</code> at most <code>k2</code> times.</p>
|
|
|
|
<p>Return <em>the minimum <strong>sum of squared difference</strong> after modifying array </em><code>nums1</code><em> at most </em><code>k1</code><em> times and modifying array </em><code>nums2</code><em> at most </em><code>k2</code><em> times</em>.</p>
|
|
|
|
<p><strong>Note</strong>: You are allowed to modify the array elements to become <strong>negative</strong> integers.</p>
|
|
|
|
<p> </p>
|
|
<p><strong class="example">Example 1:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> nums1 = [1,2,3,4], nums2 = [2,10,20,19], k1 = 0, k2 = 0
|
|
<strong>Output:</strong> 579
|
|
<strong>Explanation:</strong> The elements in nums1 and nums2 cannot be modified because k1 = 0 and k2 = 0.
|
|
The sum of square difference will be: (1 - 2)<sup>2 </sup>+ (2 - 10)<sup>2 </sup>+ (3 - 20)<sup>2 </sup>+ (4 - 19)<sup>2</sup> = 579.
|
|
</pre>
|
|
|
|
<p><strong class="example">Example 2:</strong></p>
|
|
|
|
<pre>
|
|
<strong>Input:</strong> nums1 = [1,4,10,12], nums2 = [5,8,6,9], k1 = 1, k2 = 1
|
|
<strong>Output:</strong> 43
|
|
<strong>Explanation:</strong> One way to obtain the minimum sum of square difference is:
|
|
- Increase nums1[0] once.
|
|
- Increase nums2[2] once.
|
|
The minimum of the sum of square difference will be:
|
|
(2 - 5)<sup>2 </sup>+ (4 - 8)<sup>2 </sup>+ (10 - 7)<sup>2 </sup>+ (12 - 9)<sup>2</sup> = 43.
|
|
Note that, there are other ways to obtain the minimum of the sum of square difference, but there is no way to obtain a sum smaller than 43.</pre>
|
|
|
|
<p> </p>
|
|
<p><strong>Constraints:</strong></p>
|
|
|
|
<ul>
|
|
<li><code>n == nums1.length == nums2.length</code></li>
|
|
<li><code>1 <= n <= 10<sup>5</sup></code></li>
|
|
<li><code>0 <= nums1[i], nums2[i] <= 10<sup>5</sup></code></li>
|
|
<li><code>0 <= k1, k2 <= 10<sup>9</sup></code></li>
|
|
</ul>
|